On the integral functional equations: On the integral d'Alembert's and Wilson's functional equations

Let $G$ be a locally compact group, and let $K$ be a compact subgroup of $G$. Let $\mu : G\longrightarrow\mathbb{C}\backslash\{0\}$ be a character of $G$. In this paper, we deal with the integral equations $$W_{\mu}(K):\; \;\int_{K}f(xkyk^{-1})dk+\mu(y)\int_{K}f(xky^{-1}k^{-1})dk=2f(x)g(y),$$ and $$D_{\mu}(K):\; \;\int_{K}f(xkyk^{-1})dk+\mu(y)\int_{K}f(xky^{-1}k^{-1})dk=2f(x)f(y)$$ for all $x, y\in G$ where $f, g: G\longrightarrow \mathbb{C}$, to be determined, are complex continuous functions on $G$. When $K\subset Z(G)$, the center of $G$, $D_{\mu}(K)$ reduces to the new version of d'Almbert's functional equation $f(xy)+\mu(y)f(xy^{-1})=2f(x)f(y)$, recently studied by Davison [18] and Stetk{\ae}r [35]. We derive the following link between the solutions of $W_{\mu}(K)$ and $D_{\mu}(K)$ in the following way : If $(f,g)$ is a solution of equation $W_{\mu}(K)$ such that $C_{K}f=\int_{K}f(kxk^{-1})d\omega_{K}(k)\neq 0$ then $g$ is a solution of $D_{\mu}(K)$. This result is used to establish the superstability problem of $W_{\mu}(K)$. In the case where $(G,K)$ is a central pair, we show that the solutions are expressed by means of $K$-spherical functions and related functions. Also we give explicit formulas of solutions of $D_{\mu}(K)$ in terms of irreducible representations of $G$. These formulas generalize Euler's formula $\cos(x)=\frac{e^{ix}+e^{-ix}}{2}$ on $G=\mathbb{R}$.

[1]  Bouikhalene Belaid,et al.  Stability of a generalization of Wilson’s equation , 2015, 1505.06513.

[2]  B. Ebanks,et al.  On Wilson’s functional equations , 2015 .

[3]  B. Bouikhalene,et al.  Hyers–Ulam stability of spherical functions , 2014, 1404.4109.

[4]  Soon-Mo Jung Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis , 2011 .

[5]  Dilian Yang Functional Equations and Fourier Analysis , 2010, Canadian Mathematical Bulletin.

[6]  T. Davison D'Alembert's functional equation on topological monoids , 2009, Publicationes Mathematicae Debrecen.

[7]  H. Stetkær Properties of d’Alembert functions , 2009 .

[8]  T. Davison D’Alembert’s functional equation on topological groups , 2008 .

[9]  E. Elqorachi,et al.  Trigonometric formulas and μ-spherical functions , 2006 .

[10]  B. Belaid,et al.  On Stetkaer type functional equations and Hyers--Ulam stability , 2006, Publicationes mathematicae (Debrecen).

[11]  Dilian Yang Factorization of Cosine Functions on Compact Connected Groups , 2006 .

[12]  B. Bouikhalene,et al.  On the generalized d’Alembert functional equation , 2006 .

[13]  B. Bouikhalene On the Generalized d’Alembert's and Wilson's Functional Equations on a Compact Group , 2005, Canadian Mathematical Bulletin.

[14]  H. Stetkær Functional equations and matrix-valued spherical functions , 2005 .

[15]  H. Stetkær On a variant of Wilson’s functional equation on groups , 2004 .

[16]  H. Stetkær D’Alembert’s and Wilson’s functional equations on step 2 nilpotent groups , 2004 .

[17]  E. Elqorachi,et al.  On generalized d’Alembert and Wilson functional equations , 2003 .

[18]  P. Sinopoulos Functional equations on semigroups , 2000 .

[19]  H. Stetkær D'Alembert's functional equations on metabelian groups , 2000 .

[20]  P. Gǎvruţa,et al.  A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings , 1994 .

[21]  R. Badora On a joint generalization of Cauchy's and d'Alembert's functional equations , 1992 .

[22]  C. T. Ng,et al.  SYMMETRIC SECOND DIFFERENCES IN PRODUCT FORM ON GROUPS , 1989 .

[23]  John Michael Rassias,et al.  On approximation of approximately linear mappings by linear mappings , 1982 .

[24]  J. Baker The stability of the cosine equation , 1980 .

[25]  Jesse F. Lawrence,et al.  The stability of the equation $f(x+y)=f(x)f(y)$ , 1979 .

[26]  T. Rassias On the stability of the linear mapping in Banach spaces , 1978 .

[27]  I. Corovei The cosine functional equation for nilpotent groups , 1976 .

[28]  John C. Oxtoby,et al.  Review: S. M. Ulam, A collection of mathematical problems , 1960 .

[29]  Roger Godement Theory of spherical functions , 1952 .

[30]  D. H. Hyers On the Stability of the Linear Functional Equation. , 1941, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Yang Dilian COSINE FUNCTIONS REVISITED , 2011 .

[32]  L. Székelyhidi D’ALEMBERT’S FUNCTIONAL EQUATION ON COMPACT GROUPS , 2007 .

[33]  B. Bouikhalene,et al.  Gelfand Pairs and Generalized d'Alembert's and Cauchy's Functional Equations , 2005 .

[34]  Elqorachi Elhoucien,et al.  On Cauchy-type functional equations , 2004, Int. J. Math. Math. Sci..

[35]  E. Elqorachi,et al.  On Hyers–Ulam Stability of Cauchy and Wilson Equations , 2004 .

[36]  B. Bouikhalene,et al.  Badora's Equation on Non-Abelian Locally Compact Groups , 2004 .

[37]  B. Bouikhalene ON HYERS-ULAM STABILITY OF GENERALIZED WILSON’S EQUATION , 2004 .

[38]  B. Bouikhalene ON THE STABILITY OF A CLASS OF FUNCTIONAL EQUATIONS , 2003 .

[39]  T. Rassias,et al.  ON THE ASYMPTOTICITY ASPECT OF HYERS-ULAM STABILITY OF MAPPINGS , 1998 .

[40]  W. Chojnacki On some functional equation generalizing Cauchy's and d'Alembert's functional equations , 1988 .

[41]  A. Rukhin,et al.  d’Alembert’s functional equation on groups , 1979 .

[42]  P. Kannappan The functional equation ()+(⁻¹)=2()() for groups , 1968 .