Short time-scale variables in the Gaia era: detection and characterization by structure function analysis

We investigate the capabilities of the ESA Gaia mission for detecting and characterizing short time-scale variability, from tens of seconds to a dozen hours. We assess the efficiency of the variogram analysis, for both detecting short time-scale variability and estimating the underlying characteristic time-scales from Gaia photometry, through extensive light-curve simulations for various periodic and transient short time-scale variable types. We show that, with this approach, we can detect fast periodic variability, with amplitudes down to a few millimagnitudes, as well as some M dwarf flares and supernovae explosions, with limited contamination from longer time-scale variables or constant sources. Time-scale estimates from the variogram give valuable information on the rapidity of the underlying variation, which could complement time-scale estimates from other methods, like Fourier-based periodograms, and be reinvested in preparation of ground-based photometric follow-up of short time-scale candidates evidenced by Gaia. The next step will be to find new short time-scale variable candidates from real Gaia data, and to further characterize them using all the Gaia information, including colour and spectrum.

[1]  G. Nelemans,et al.  The fast transient sky with Gaia , 2017, 1710.08924.

[2]  H. E. Delgado,et al.  Gaia Data Release 1: The variability processing & analysis and its application to the south ecliptic pole region , 2017, 1702.03295.

[3]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[4]  N. Mowlavi,et al.  Gaia Data Release 1 - The Cepheid & RR Lyrae star pipeline and its application to the south ecliptic pole region , 2016, 1609.04269.

[5]  G. Nelemans,et al.  The OmegaWhite Survey for short period variable stars - II. An overview of results from the first four years , 2016, 1608.05280.

[6]  S. Kozłowski REVISITING STOCHASTIC VARIABILITY OF AGNs WITH STRUCTURE FUNCTIONS , 2016, 1604.05858.

[7]  L. Wyrzykowski First year of the Gaia Science Alerts , 2016, 1601.02827.

[8]  P. Groot,et al.  The OmegaWhite Survey for Short-Period Variable Stars - I : Overview and First Results , 2015, 1508.06277.

[9]  Sergey E. Koposov,et al.  Total eclipse of the heart: the AM CVn Gaia14aae/ASSASN-14cn , 2015, 1507.04663.

[10]  L. Balona Flare stars across the H–R diagram , 2015 .

[11]  Leslie Hebb,et al.  KEPLER FLARES. II. THE TEMPORAL MORPHOLOGY OF WHITE-LIGHT FLARES ON GJ 1243 , 2014, 1411.3723.

[12]  Krzysztof Nienartowicz,et al.  The variability processing and analysis of the Gaia mission , 2014, 1502.03830.

[13]  Sergey E. Koposov,et al.  THE CATALINA SURVEYS PERIODIC VARIABLE STAR CATALOG , 2014, 1405.4290.

[14]  W. M. Wood-Vasey,et al.  MULTI-COLOR OPTICAL AND NEAR-INFRARED LIGHT CURVES OF 64 STRIPPED-ENVELOPE CORE–COLLAPSE SUPERNOVAE , 2014, 1405.1428.

[15]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[16]  Laurent Eyer,et al.  EXPLORING THE VARIABLE SKY WITH LINEAR. III. CLASSIFICATION OF PERIODIC LIGHT CURVES , 2013, 1308.0357.

[17]  Sergey E. Koposov,et al.  Transient astronomy with the Gaia satellite , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  梅畑 豪紀,et al.  39th COSPAR Scientific Assembly , 2012 .

[19]  J. H. J. de Bruijne,et al.  Science performance of Gaia, ESA’s space-astrometry mission , 2012, 1201.3238.

[20]  Ž. Ivezić,et al.  A DESCRIPTION OF QUASAR VARIABILITY MEASURED USING REPEATED SDSS AND POSS IMAGING , 2011, 1112.0679.

[21]  G. Nelemans,et al.  Stellar variability on time-scales of minutes: results from the first 5 yr of the Rapid Temporal Survey , 2011, 1101.2445.

[22]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[23]  松永 典之 Stellar Pulsation : Challenges for Theory and Observation , 2009 .

[24]  N. Mowlavi,et al.  Detecting Short Period Variable Stars with Gaia , 2009, 0907.4084.

[25]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[26]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[27]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[28]  M. Perryman,et al.  A Giant Step: from Milli- to Micro-arcsecond Astrometry , 2008 .

[29]  Laurent Eyer,et al.  Variable stars across the observational HR diagram , 2007, 0712.3797.

[30]  D. Katz,et al.  Gaia: organisation and challenges for the data processing , 2007, Proceedings of the International Astronomical Union.

[31]  Michael W. Richmond,et al.  Ultracompact AM Canum Venaticorum Binaries from the Sloan Digital Sky Survey: Three Candidates Plus the First Confirmed Eclipsing System , 2005, astro-ph/0506730.

[32]  U. Helsinki,et al.  RApid Temporal Survey (RATS) – I. Overview and first results , 2005, astro-ph/0503138.

[33]  S. O. Kepler,et al.  Ensemble Characteristics of the ZZ Ceti Stars , 2005, astro-ph/0507425.

[34]  L. Eyer,et al.  Variability-selected QSO candidates in OGLE-II Galactic bulge fields , 2004, astro-ph/0407302.

[35]  L. Eyer,et al.  Predictions on the Number of Variable Stars for the GAIA Space Mission and for Surveys such as the Ground-Based International Liquid Mirror Telescope , 2000, astro-ph/0002383.

[36]  Marc G. Genton,et al.  Characterization of variable stars by robust wave variograms: An application to Hipparcos mission , 1999 .

[37]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[38]  A. Schwarzenberg-Czerny On the advantage of using analysis of variance for period search. , 1989 .

[39]  D. S. Heeschen,et al.  Flicker of extragalactic radio sources at two frequencies , 1984 .

[40]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[41]  T. Deeming Fourier analysis with unequally-spaced data , 1975 .

[42]  T. D. Kinman,et al.  An RR Lyrae Star Survey with Ihe Lick 20-INCH Astrograph II. The Calculation of RR Lyrae Periods by Electronic Computer. , 1965 .

[43]  Andrzej Pigulski,et al.  β Cephei stars in the ASAS-3 data. II. 103 new β Cephei stars and a discussion of low-frequency modes , 2007, 0711.2530.

[44]  G. Pojmański,et al.  β Cephei stars in the ASAS-3 data I. Long-term variations of periods and amplitudes , , 2008 .

[45]  M. F. Aller,et al.  The University of Michigan Radio Astronomy Data Base. I. Structure Function Analysis and the Relation between BL Lacertae Objects and Quasi-stellar Objects , 1992 .

[46]  R. M. Deeley Variable Stars , 1916, Nature.