RR Lyrae Stars in Galactic Globular Clusters. III. Pulsational Predictions for Metal Content Z = 0.0001 to Z = 0.006

The results of nonlinear, convective models of RR Lyrae pulsators with metal content Z = 0.0001-0.006 are discussed and several predicted relations connecting pulsational (period and amplitude of pulsation) and evolutionary parameters (mass, absolute magnitude, and color of the pulsator) are derived. These relations, when linked with the average mass of RR Lyrae stars, as suggested by horizontal-branch evolutionary models, provide a "pulsational" route to the determination of the distance modulus, both apparent and intrinsic, of RR Lyrae-rich globular clusters. Based on a preliminary set of synthetic horizontal-branch simulations, we compare the predicted relations with observed variables in selected globular clusters (M2, M3, M5, M15, M55, M68, NGC 1851, NGC 3201, NGC 5466, NGC 6362, NGC 6934, and IC 4499). We show that the distance moduli inferred by the various theoretical relations are mutually consistent within the errors, provided that the value of the mixing-length parameter slightly increases from the blue to the red edge of the pulsation region. Moreover, we show that the relative "pulsational" distance moduli fit well previous empirical results and that the parallax of the prototype variable RR Lyr, as inferred by the predicted period-Wesenheit relation, is in close agreement with the Hubble Space Telescope astrometric measurement.

[1]  G. Bono,et al.  Nonlinear investigation of the pulsational properties of RR Lyrae variables , 1997 .

[2]  A. Walker,et al.  CCD Photometry of Galactic Globular Clusters.III.IC 4499 , 1996 .

[3]  BVI Time-Series Data of the Galactic Globular Cluster NGC 3201. I. RR Lyrae Stars , 2002, astro-ph/0205219.

[4]  D. Valls-Gabaud,et al.  Disentangling discrepancies between stellar evolution theory and sub-solar mass stars The influence of the mixing length parameter for the UV Psc binary , 2003, astro-ph/0307360.

[5]  Bruce W. Carney,et al.  THE CONSTANCY OF [ALPHA/FE] IN GLOBULAR CLUSTERS OF DIFFERING [FE/H] AND AGE , 1996 .

[6]  S. Degl'Innocenti,et al.  A pulsational approach to near-infrared and visual magnitudes of RR Lyr stars , 2003 .

[7]  RR Lyrae Variables in the Globular Cluster M55. The First Evidence for Nonradial Pulsations in RR Lyrae Stars , 1998, astro-ph/9812302.

[8]  V. Ripepi,et al.  RR Lyrae variables in M5 as a test of pulsational theory , 1999, astro-ph/9902279.

[9]  Alistair R. Walker,et al.  CCD Photometry of Galactic Globular Clusters. IV. The NGC 1851 RR Lyrae Variables , 1998, astro-ph/9804339.

[10]  A. Schwarzenberg-Czerny,et al.  RR Lyrae Variables in the Globular Cluster M5 , 2000, astro-ph/0001102.

[11]  I. Ivans,et al.  A Globular Cluster Metallicity Scale Based on the Abundance of Feii , 2002, astro-ph/0305380.

[12]  W. Jefferys,et al.  Astrometry with the Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator RR Lyrae , 2001, astro-ph/0110271.

[13]  Robert F. Stellingwerf,et al.  Pulsation and stability of RR Lyrae stars. 1: Instability strip , 1994 .

[14]  A. Walker BVI CCD Photometry of Galactic Globular Clusters. II. M68 , 1994 .

[15]  M. Castellani,et al.  RR Lyrae Stars in Galactic Globular Clusters. II. A Theoretical Approach to Variables in M3 , 2003, astro-ph/0306356.

[16]  G. Bono,et al.  Theoretical insights into the RR Lyrae K-band period–luminosity relation , 2001 .

[17]  Castellani,et al.  The RR Lyrae Star U Comae as a Test for Nonlinear Pulsation Models. , 2000, The Astrophysical journal.

[18]  B. F. Madore,et al.  The period-luminosity relation. IV. Intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. , 1982 .

[19]  B. Carney,et al.  BV Photometry of the RR Lyrae Variables of the Globular Cluster M3 , 1995 .

[20]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[21]  BV Photometry of RR Lyrae Variables in the Globular Cluster NGC 5466 , 1993 .

[22]  Gisella Clementini,et al.  Distances, Ages, and Epoch of Formation of Globular Clusters , 1999, astro-ph/9902086.

[23]  M. Castellani,et al.  RR Lyrae variables in Galactic globular clusters - I. The observational scenario , 2003, astro-ph/0308435.

[24]  Wendy L. Freedman,et al.  THE CEPHEID DISTANCE SCALE , 1991 .

[25]  S. Cassisi,et al.  RR Lyrae variables in Galactic globular clusters: IV. Synthetic HB and RR Lyrae predictions , 2004 .

[26]  J. Rowe,et al.  Variable Stars in Galactic Globular Clusters , 2001, astro-ph/0108024.

[27]  M. Marconi,et al.  Theoretical Models for Bump Cepheids , 2002, astro-ph/0201106.

[28]  B. Carney,et al.  Chemical Abundances of Three Metal-poor Globular Clusters (NGC 6287, NGC 6293, and NGC 6541) in the Inner Halo , 2002, astro-ph/0205393.

[29]  N. Silbermann,et al.  The RR Lyrae variable stars in the globular cluster M15 , 1995 .