Extrapolated cyclic subgradient projection methods for the convex feasibility problems and their numerical behaviour

ABSTRACT We present two versions of the extrapolated cyclic subgradient projections method for solving the convex feasibility problem. Moreover, we present the results of numerical tests, where we compare the methods with the classical cyclic subgradient projections method.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  Andrzej Cegielski,et al.  Regular Sequences of Quasi-Nonexpansive Operators and Their Applications , 2017, SIAM J. Optim..

[3]  T. Nikazad,et al.  Generalized relaxation of string averaging operators based on strictly relaxed cutter operators , 2017, 1706.06675.

[4]  Andrzej Cegielski,et al.  General Method for Solving the Split Common Fixed Point Problem , 2015, J. Optim. Theory Appl..

[5]  Adil M. Bagirov,et al.  Introduction to Nonsmooth Optimization: Theory, Practice and Software , 2014 .

[6]  Heinz H. Bauschke,et al.  Linear and strong convergence of algorithms involving averaged nonexpansive operators , 2014, Journal of Mathematical Analysis and Applications.

[7]  A. Cegielski Iterative Methods for Fixed Point Problems in Hilbert Spaces , 2012 .

[8]  Andrzej Cegielski,et al.  Extrapolation and Local Acceleration of an Iterative Process for Common Fixed Point Problems , 2012, 1204.4284.

[9]  Frank Deutsch,et al.  The rate of convergence for the cyclic projections algorithm I: Angles between convex sets , 2006, J. Approx. Theory.

[10]  I. Yamada,et al.  Hybrid Steepest Descent Method for Variational Inequality Problem over the Fixed Point Set of Certain Quasi-nonexpansive Mappings , 2005 .

[11]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[12]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[13]  P. L. Combettes,et al.  Hilbertian convex feasibility problem: Convergence of projection methods , 1997 .

[14]  Patrick L. Combettes,et al.  Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections , 1997, IEEE Trans. Image Process..

[15]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[16]  Lúcio T. Santos,et al.  A parallel subgradient projections method for the convex feasibility problem , 1987 .

[17]  Yair Censor,et al.  Cyclic subgradient projections , 1982, Math. Program..

[18]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[19]  J. Ben Rosen,et al.  Pracniques: construction of nonlinear programming test problems , 1965, Commun. ACM.

[20]  Leon Hirsch,et al.  Fundamentals Of Convex Analysis , 2016 .

[21]  Adil M. Bagirov,et al.  Introduction to Nonsmooth Optimization , 2014 .

[22]  Yongyi Yang,et al.  Vector Space Projections: A Numerical Approach to Signal and Image Processing, Neural Nets, and Optics , 1998 .

[23]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[24]  J. B. Rosen,et al.  Construction of nonlinear programming test problems , 1965 .