Monitoring multiple distances within a single molecule using switchable FRET

The analysis of structure and dynamics of biomolecules is important for understanding their function. Toward this aim, we introduce a method called 'switchable FRET', which combines single-molecule fluorescence resonance energy transfer (FRET) with reversible photoswitching of fluorophores. Typically, single-molecule FRET is measured within a single donor-acceptor pair and reports on only one distance. Although multipair FRET approaches that monitor multiple distances have been developed, they are technically challenging and difficult to extend, mainly because of their reliance on spectrally distinct acceptors. In contrast, switchable FRET sequentially probes FRET between a single donor and spectrally identical photoswitchable acceptors, dramatically reducing the experimental and analytical complexity and enabling direct monitoring of multiple distances. Our experiments on DNA molecules, a protein-DNA complex and dynamic Holliday junctions demonstrate the potential of switchable FRET for studying dynamic, multicomponent biomolecules.

[1]  Helmut Grubmüller,et al.  Single-molecule FRET measures bends and kinks in DNA , 2008, Proceedings of the National Academy of Sciences.

[2]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[3]  A. Kapanidis,et al.  Biology, one molecule at a time. , 2009, Trends in biochemical sciences.

[4]  J. Torella,et al.  Conformational transitions in DNA polymerase I revealed by single-molecule FRET , 2009, Proceedings of the National Academy of Sciences.

[5]  Olivier Daigle,et al.  Faint flux performance of an EMCCD , 2006, SPIE Astronomical Telescopes + Instrumentation.

[6]  Jan Vogelsang,et al.  Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy , 2009, Proceedings of the National Academy of Sciences.

[7]  Nam Ki Lee,et al.  Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[9]  D. Swigon,et al.  Catabolite activator protein: DNA binding and transcription activation. , 2004, Current opinion in structural biology.

[10]  M Dahan,et al.  Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Helen M Berman,et al.  Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: recognition of pyrimidine-purine and purine-purine steps. , 2006, Journal of molecular biology.

[12]  T. Gadella,et al.  FRET and FLIM techniques , 2009 .

[13]  Paul R. Selvin,et al.  Single-molecule techniques : a laboratory manual , 2008 .

[14]  R. Ebright,et al.  Mean DNA bend angle and distribution of DNA bend angles in the CAP-DNA complex in solution. , 2001, Journal of molecular biology.

[15]  Nam Ki Lee,et al.  Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. , 2005, Biophysical journal.

[16]  Jens Michaelis,et al.  A nano-positioning system for macromolecular structural analysis , 2008, Nature Methods.

[17]  Mark Bates,et al.  Short-range spectroscopic ruler based on a single-molecule optical switch. , 2005, Physical review letters.

[18]  D. Lilley,et al.  Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. McKinney,et al.  Analysis of single-molecule FRET trajectories using hidden Markov modeling. , 2006, Biophysical journal.

[20]  J. Eisinger,et al.  The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. , 1979, Biophysical journal.

[21]  A. Herrero,et al.  Detectors and Data Analysis Techniques for Wide Field Optical Imaging , 1997 .

[22]  T. Jovin,et al.  FRET imaging , 2003, Nature Biotechnology.

[23]  Nam Ki Lee,et al.  Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. , 2007, Biophysical journal.

[24]  David Yadin,et al.  Defining the limits of single-molecule FRET resolution in TIRF microscopy. , 2010, Biophysical journal.

[25]  D. Lilley,et al.  Location of cyanine-3 on double-stranded DNA: importance for fluorescence resonance energy transfer studies. , 2000, Biochemistry.

[26]  D. Lilley,et al.  Structural dynamics of individual Holliday junctions , 2003, Nature Structural Biology.

[27]  Jan Vogelsang,et al.  On the mechanism of Trolox as antiblinking and antibleaching reagent. , 2009, Journal of the American Chemical Society.

[28]  Taekjip Ha,et al.  Single-molecule three-color FRET. , 2004, Biophysical journal.

[29]  Single-molecule FRET analysis of protein-DNA complexes. , 2009, Methods in molecular biology.

[30]  Nam Ki Lee,et al.  Alternating‐Laser Excitation of Single Molecules , 2005 .

[31]  Mike Heilemann,et al.  Super-resolution imaging with small organic fluorophores. , 2009, Angewandte Chemie.

[32]  A. Ebner,et al.  Cy3B™: Improving the Performance of Cyanine Dyes , 2004, Journal of Fluorescence.

[33]  Yuri L Lyubchenko,et al.  Holliday junction dynamics and branch migration: single-molecule analysis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Gaudenz Danuser,et al.  FRET or no FRET: a quantitative comparison. , 2003, Biophysical journal.

[35]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[36]  Jean-Pierre Clamme,et al.  Three-color single-molecule fluorescence resonance energy transfer. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  S. McKinney,et al.  Nonblinking and long-lasting single-molecule fluorescence imaging , 2006, Nature Methods.

[38]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[39]  R. Clegg Fluorescence resonance energy transfer and nucleic acids. , 1992, Methods in enzymology.

[40]  A. Ebner,et al.  Cy 3 BTM : Improving the Performance of Cyanine Dyes , 2022 .

[41]  M. Briggs,et al.  DNA binding and transcription activation specificity of hepatocyte nuclear factor 4. , 1998, Nucleic acids research.

[42]  M. Heilemann,et al.  Carbocyanine dyes as efficient reversible single-molecule optical switch. , 2005, Journal of the American Chemical Society.

[43]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[44]  R. Ebright,et al.  Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni(2+):nitrilotriacetic Acid (n)-fluorochrome conjugates. , 2001, Journal of the American Chemical Society.

[45]  D. Brockwell,et al.  Handbook of Single Molecule Fluorescence Spectroscopy , 2006 .

[46]  R. Ebright,et al.  Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. , 2006, Biophysical journal.

[47]  Jennifer L. Knight,et al.  Structural Organization of Bacterial RNA Polymerase Holoenzyme and the RNA Polymerase-Promoter Open Complex , 2002, Cell.

[48]  Christopher J Easley,et al.  Optical lock-in detection of FRET using synthetic and genetically encoded optical switches. , 2008, Biophysical journal.