Logspace Versions of the Theorems of Bodlaender and Courcelle

Bodlaender's Theorem states that for every k there is a linear-time algorithm that decides whether an input graph has tree width k and, if so, computes a width-k tree composition. Courcelle's Theorem builds on Bodlaender's Theorem and states that for every monadic second-order formula φ and for every k there is a linear-time algorithm that decides whether a given logical structure A of tree width at most k satisfies φ. We prove that both theorems still hold when "linear time" is replaced by "logarithmic space." The transfer of the powerful theoretical framework of monadic second-order logic and bounded tree width to logarithmic space allows us to settle a number of both old and recent open problems in the log space world.

[1]  Egon Wanke,et al.  Bounded Tree-Width and LOGCFL , 1993, J. Algorithms.

[2]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[3]  Jacobo Torán,et al.  Restricted space algorithms for isomorphism on bounded treewidth graphs , 2010, Inf. Comput..

[4]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[5]  Wolfgang Thomas,et al.  Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics , 1990 .

[6]  Birgit Jenner Knapsack Problems for NL , 1995, Inf. Process. Lett..

[7]  Michael Ben-Or,et al.  Computing Algebraic Formulas Using a Constant Number of Registers , 1992, SIAM J. Comput..

[8]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[9]  E. Allender Ruspacelog N Dspacelog 2 N= Log Log N , 1997 .

[10]  Bruce A. Reed,et al.  Finding approximate separators and computing tree width quickly , 1992, STOC '92.

[11]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[12]  S. Arnborg,et al.  Finding Minimal Forbidden Minors Using a Finite Congruence , 1991, ICALP.

[13]  Arie M. C. A. Koster,et al.  Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..

[14]  Hans L. Bodlaender,et al.  NC-Algorithms for Graphs with Small Treewidth , 1988, WG.

[15]  Andrew Chiu,et al.  Division in logspace-uniform NC1 , 2001, RAIRO Theor. Informatics Appl..

[16]  Andreas Jakoby,et al.  Paths Problems in Symmetric Logarithmic Space , 2002, ICALP.

[17]  Burkhard Monien On a Subclass of Pseudopolynomial Problems , 1980, MFCS.

[18]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[19]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[20]  J. Lagergren Efficient parallel algorithms for tree-decomposition and related problems , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[21]  Eric Allender,et al.  Uniform constant-depth threshold circuits for division and iterated multiplication , 2002, J. Comput. Syst. Sci..

[22]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..

[23]  Andreas Jakoby,et al.  Space efficient algorithms for directed series-parallel graphs , 2006, J. Algorithms.

[24]  Hans L. Boblaender Polynomial algorithms for graph isomorphism and chromatic index on partial k -trees , 1990 .

[25]  Eric Allender,et al.  RUSPACE(log n) $\subseteq$ DSPACE(log2n/log log n) , 1998, Theory of Computing Systems.

[26]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[27]  Samuel R. Buss,et al.  An Optimal Parallel Algorithm for Formula Evaluation , 1992, SIAM J. Comput..

[28]  Omer Reingold,et al.  Undirected connectivity in log-space , 2008, JACM.

[29]  Vikraman Arvind,et al.  The Space Complexity of k -Tree Isomorphism , 2007, ISAAC.

[30]  Torben Hagerup,et al.  Parallel Algorithms with Optimal Speedup for Bounded Treewidth , 1995, ICALP.

[31]  Andreas Jakoby,et al.  Logspace Algorithms for Computing Shortest and Longest Paths in Series-Parallel Graphs , 2007, FSTTCS.

[32]  Craig A. Tovey,et al.  Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families , 1992, Algorithmica.

[33]  Dung T. Huynh,et al.  On a Complexity Hierarchy Between L and NL , 1988, Inf. Process. Lett..

[34]  Hans L. Bodlaender,et al.  Polynomial Algorithms for Graph Isomorphism and Chromatic Index on Partial k-Trees , 1988, J. Algorithms.

[35]  Tao Jiang,et al.  On Some Languages in NC , 1988, AWOC.

[36]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[37]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[38]  Andreas Jakoby,et al.  Space Efficient Algorithms for Series-Parallel Graphs , 2001, STACS.

[39]  Bruce Litow,et al.  Division in logspace-uniform $\mbox{NC}^1$ , 2001 .

[40]  Oleg Verbitsky,et al.  Testing Graph Isomorphism in Parallel by Playing a Game , 2006, ICALP.

[41]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[42]  Georg Gottlob,et al.  Computing LOGCFL certificates , 1999, Theor. Comput. Sci..

[43]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[44]  Georg Gottlob,et al.  Width Parameters Beyond Tree-width and their Applications , 2008, Comput. J..