Modelling of the thermodynamic and solvation properties of electrolyte solutions with the statistical associating fluid theory for potentials of variable range

An improved formulation of the extension of the statistical associating fluid theory for potentials of variable range to electrolytes (SAFT-VRE) is presented, incorporating a representation for the dielectric constant of the solution that takes into account the temperature, density and composition of the solvent. The proposed approach provides an excellent correlation of the dielectric-constant data available for a number of solvents including water, representative alcohols and carbon dioxide, and it is shown that the methodology can be used to treat mixed-solvent electrolyte solutions. Models for strong electrolytes of the metal-halide family are considered here. The salts are treated as fully dissociated and ion-specific interaction parameters are presented. Vapour pressure, density, and mean ionic activity coefficient data are used to determine the ion–ion and solvent–ion parameters, and mixed-salt electrolyte solutions (brines) are then treated predictively. We find that the resulting intermolecular potential models follow physical trends in terms of energies and ion sizes with a close relationship observed with well-established ionic diameters. A good description is obtained for the densities, mean ionic activity coefficients, and vapour pressures of the electrolyte solutions studied. The theory is also seen to provide excellent predictions of the osmotic coefficient and of the depression of the freezing temperature, and provides a qualitative estimate of the solvation free energy. The vapour pressure of aqueous brines is predicted accurately, as is the density of these solutions, although not at the highest pressures considered. Calculations for the vapour–liquid and liquid–liquid equilibria of salts in water+methanol and water+n-butan-1-ol are presented. In addition, it is shown that the salting-out of carbon dioxide in sodium chloride solutions is captured well using a predictive model.

[1]  R. Kanzaki,et al.  Thermodynamics , 2022, Nonlinear Solid Mechanics for Finite Element Analysis: Dynamics.

[2]  G. Kontogeorgis,et al.  Modeling of dielectric properties of aqueous salt solutions with an equation of state. , 2013, The journal of physical chemistry. B.

[3]  A. Galindo,et al.  Modeling of Strong Electrolytes with ePPC-SAFT up to High Temperatures , 2013 .

[4]  F. García-Sánchez,et al.  Thermodynamic model for aqueous electrolyte solutions with partial ionization , 2013 .

[5]  Danlu Tong,et al.  Solubility of CO2 in Aqueous Solutions of CaCl2 or MgCl2 and in a Synthetic Formation Brine at Temperatures up to 423 K and Pressures up to 40 MPa , 2013 .

[6]  G. Kontogeorgis,et al.  Modeling of dielectric properties of complex fluids with an equation of state. , 2013, The journal of physical chemistry. B.

[7]  G. Kontogeorgis,et al.  Comparison of the Debye−Hückel and the Mean Spherical Approximation Theories for Electrolyte Solutions , 2012 .

[8]  Geoffrey C. Maitland,et al.  Densities of Aqueous MgCl2(aq), CaCl2(aq), KI(aq), NaCl(aq), KCl(aq), AlCl3(aq), and (0.964 NaCl + 0.136 KCl)(aq) at Temperatures Between (283 and 472) K, Pressures up to 68.5 MPa, and Molalities up to 6 mol·kg–1 , 2012 .

[9]  A. Galindo,et al.  Modelling the effect of methanol, glycol inhibitors and electrolytes on the equilibrium stability of hydrates with the SAFT-VR approach , 2012 .

[10]  G. Jackson,et al.  Modelling the fluid phase behaviour of aqueous mixtures of multifunctional alkanolamines and carbon dioxide using transferable parameters with the SAFT-VR approach , 2012 .

[11]  Christoph Held,et al.  Measuring and modeling alcohol/salt systems , 2012 .

[12]  J. Vera,et al.  The activity of individual ions. A conceptual discussion of the relation between the theory and the , 2011 .

[13]  Amparo Galindo,et al.  Experimental and molecular modeling study of the three-phase behavior of (n-decane + carbon dioxide + water) at reservoir conditions. , 2011, The journal of physical chemistry. B.

[14]  Xiaoyan Ji,et al.  A SAFT equation of state for the quaternary H2S–CO2–H2O–NaCl system , 2011 .

[15]  Shengli Huang,et al.  Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density , 2011 .

[16]  D. Truhlar Single-Ion Solvation: Experimental and Theoretical Approaches to Elusive Thermodynamic Quantities , 2011 .

[17]  J. Vera,et al.  On the measurement of the real values of individual ionic activities: A chemical engineering perspective , 2011 .

[18]  M. M. Piñeiro,et al.  An examination of the ternary methane + carbon dioxide + water phase diagram using the SAFT-VR approach. , 2011, The journal of physical chemistry. B.

[19]  Claire S. Adjiman,et al.  Simultaneous prediction of vapour-liquid and liquid-liquid equilibria (VLE and LLE) of aqueous mixtures with the SAFT-γ group contribution approach , 2011 .

[20]  Frances E. Pereira,et al.  Transferable SAFT-VR models for the calculation of the fluid phase equilibria in reactive mixtures of carbon dioxide, water, and n-alkylamines in the context of carbon capture. , 2011, The journal of physical chemistry. B.

[21]  A. Galindo,et al.  Interfacial tension measurements and modelling of (carbon dioxide + n-alkane) and (carbon dioxide + water) binary mixtures at elevated pressures and temperatures , 2010 .

[22]  J. Gross,et al.  Equation of state for aqueous electrolyte systems based on the semirestricted non-primitive mean spherical approximation , 2010 .

[23]  Rui Sun,et al.  Prediction of vapor-liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part I: Application to H2O-CO2 system , 2010 .

[24]  Clare McCabe,et al.  Modeling the phase behavior, excess enthalpies and Henry's constants of the H2O + H2S binary mixture using the SAFT-VR+D approach , 2010 .

[25]  G. Kontogeorgis,et al.  Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories , 2010 .

[26]  Claire S. Adjiman,et al.  Modeling the Fluid Phase Behavior of Carbon Dioxide in Aqueous Solutions of Monoethanolamine Using Transferable Parameters with the SAFT-VR Approach , 2010 .

[27]  A. Arce,et al.  Effect of the reference solution in the measurement of ion activity coefficients using cells with transference at T = 298.15 K , 2010 .

[28]  F. Malatesta Comment on the individual ion activities of Na+ and Cl− by Arce, Wilczek-Vera and Vera , 2010 .

[29]  Georgios M. Kontogeorgis,et al.  Thermodynamic Models for Industrial Applications , 2010 .

[30]  G. Sadowski,et al.  Modeling aqueous electrolyte solutions. Part 2. Weak electrolytes , 2009 .

[31]  J. D. Hemptinne,et al.  The simultaneous representation of dielectric constant, volume and activity coefficients using an electrolyte equation of state , 2008 .

[32]  Sugata P. Tan,et al.  Recent Advances and Applications of Statistical Associating Fluid Theory , 2008 .

[33]  G. Sadowski,et al.  Modeling aqueous electrolyte solutions: Part 1. Fully dissociated electrolytes , 2008 .

[34]  George Jackson,et al.  Modeling and Understanding Closed-Loop Liquid−Liquid Immiscibility in Aqueous Solutions of Poly(ethylene glycol) Using the SAFT-VR Approach with Transferable Parameters , 2008 .

[35]  Lloyd L. Lee,et al.  Molecular Thermodynamics of Electrolyte Solutions , 2008 .

[36]  B. Tohidi,et al.  Freezing Point Depression of Electrolyte Solutions: Experimental Measurements and Modeling Using the Cubic-Plus-Association Equation of State , 2008 .

[37]  Ioannis G. Economou,et al.  Multi-scale Modeling of Structure, Dynamic and Thermodynamic Properties of Imidazolium-based Ionic Liquids: Ab initio DFT Calculations, Molecular Simulation and Equation of State Predictions , 2008 .

[38]  A. Galindo,et al.  Prediction of binary intermolecular potential parameters for use in modelling fluid mixtures , 2008 .

[39]  A. Galindo,et al.  Modelling the phase equilibria and excess properties of the water + carbon dioxide binary mixture , 2007 .

[40]  A. Galindo,et al.  Phase equilibria, excess properties, and henry's constants of the water + carbon dioxide binary mixture , 2007 .

[41]  C. McCabe,et al.  Development of an equation of state for electrolyte solutions by combining the statistical associating fluid theory and the mean spherical approximation for the nonprimitive model. , 2007, The Journal of chemical physics.

[42]  J. D. Hemptinne,et al.  Multicomponent equations of state for electrolytes , 2007 .

[43]  Zhenhao Duan,et al.  PVTx properties of the CO2–H2O and CO2–H2O–NaCl systems below 647 K: Assessment of experimental data and thermodynamic models , 2007 .

[44]  Andrew J. Haslam,et al.  Developing optimal Wertheim-like models of water for use in Statistical Associating Fluid Theory (SAFT) and related approaches , 2006 .

[45]  J. Coxam,et al.  Enthalpy and solubility data of CO2 in water and NaCl(aq) at conditions of interest for geological sequestration , 2006 .

[46]  Hesam Najibi,et al.  Estimating the Hydrate Safety Margin in the Presence of Salt and/or Organic Inhibitor Using Freezing Point Depression Data of Aqueous Solutions , 2006 .

[47]  R. Young,et al.  Modeling phase equilibria and speciation in mixed-solvent electrolyte systems: II. Liquid–liquid equilibria and properties of associating electrolyte solutions☆ , 2006 .

[48]  J. Vera,et al.  Towards accurate values of individual ion activities: Additional data for NaCl, NaBr and KCl, and new data for NH4Cl , 2006 .

[49]  A. Galindo,et al.  Application of the simplex simulated annealing technique to nonlinear parameter optimization for the SAFT-VR equation of state , 2005 .

[50]  Xiaoyan Ji,et al.  SAFT1-RPM Approximation Extended to Phase Equilibria and Densities of CO2−H2O and CO2−H2O−NaCl Systems , 2005 .

[51]  J. Vera,et al.  On the measurement of individual ion activities , 2005 .

[52]  A. Galindo,et al.  Modeling electrolyte solutions with the SAFT-VR equation using Yukawa potentials and the mean-spherical approximation , 2005 .

[53]  Ioannis G. Economou,et al.  Extended statistical associating fluid theory (SAFT) equations of state for dipolar fluids , 2005 .

[54]  S. J. Zhu,et al.  Theoretical simulation for identical bands , 2005 .

[55]  Gabriele Sadowski,et al.  Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory , 2005 .

[56]  Yigui Li,et al.  An equation of state for electrolyte solutions by a combination of low-density expansion of non-primitive mean spherical approximation and statistical associating fluid theory , 2005 .

[57]  Ivo Nezbeda,et al.  Towards a unified view of fluids , 2005 .

[58]  L. Blanco,et al.  Osmotic and activity coefficients of aqueous solutions of KCl at temperatures of 283.15, 288.15, 293.15 and 298.15 K , 2004 .

[59]  Werner Kunz,et al.  Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data , 2004 .

[60]  Amparo Galindo,et al.  Prediction of the Salting-Out Effect of Strong Electrolytes on Water + Alkane Solutions , 2003 .

[61]  Liang-Sun Lee,et al.  Vapor pressures of aqueous solutions with mixed salts of NaCl + KBr and NaBr + KCl , 2003 .

[62]  P. Cummings,et al.  Effect of the range of interactions on the properties of fluids. Phase equilibria in pure carbon dioxide, acetone, methanol, and water , 2002 .

[63]  S. Sandler,et al.  An Equation of State for Electrolyte Solutions Covering Wide Ranges of Temperature, Pressure, and Composition , 2002 .

[64]  Amparo Galindo† and,et al.  Theoretical Examination of the Global Fluid Phase Behavior and Critical Phenomena in Carbon Dioxide + n-Alkane Binary Mixtures , 2002 .

[65]  George Jackson,et al.  A statistical associating fluid theory for electrolyte solutions (SAFT-VRE) , 2001 .

[66]  Gabriele Sadowski,et al.  Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules , 2001 .

[67]  G. Sieder,et al.  High-pressure (vapor+liquid) equilibrium in binary mixtures of (carbon dioxide+water or acetic acid) at temperatures from 313 to 353 K , 2000 .

[68]  Joachim Gross,et al.  Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains , 2000 .

[69]  H. Modarress,et al.  Application of the MSA to the modeling of the activity coefficients of individual ions , 2000 .

[70]  W. Fawcett Thermodynamic Parameters for the Solvation of Monatomic Ions in Water , 1999 .

[71]  George Jackson,et al.  SAFT-VRE: Phase Behavior of Electrolyte Solutions with the Statistical Associating Fluid Theory for Potentials of Variable Range , 1999 .

[72]  Yigui Li,et al.  A new equation of state for real aqueous ionic fluids based on electrolyte perturbation theory, mean spherical approximation and statistical associating fluid theory , 1999 .

[73]  A. Galindo,et al.  An Examination of the Cloud Curves of Liquid−Liquid Immiscibility in Aqueous Solutions of Alkyl Polyoxyethylene Surfactants Using the SAFT-HS Approach with Transferable Parameters , 1998 .

[74]  J. Newman,et al.  On converting from the McMillan-Mayer framework I. Single-solvent system , 1998 .

[75]  J. Prausnitz,et al.  Phase Equilibria for Systems Containing Hydrocarbons, Water, and Salt: An Extended Peng−Robinson Equation of State , 1998 .

[76]  George Jackson,et al.  THE THERMODYNAMICS OF MIXTURES AND THE CORRESPONDING MIXING RULES IN THE SAFT-VR APPROACH FOR POTENTIALS OF VARIABLE RANGE , 1998 .

[77]  Yigui Li,et al.  Application of perturbation theory to chain and polar fluids: Pure alkanes, alkanols and water , 1998 .

[78]  S. Sandler,et al.  Using Molecular Orbital Calculations To Describe the Phase Behavior of Hydrogen-Bonding Fluids† , 1997 .

[79]  Eric W. Lemmon,et al.  A Formulation for the Static Permittivity of Water and Steam at Temperatures from 238 K to 873 K at Pressures up to 1200 MPa, Including Derivatives and Debye–Hückel Coefficients , 1997 .

[80]  J. I. Kim,et al.  Activity coefficients and pitzer parameters in the systems Na+/Cs+/Cl-/TcO4- or ClO4-/H2O at 25°C , 1997 .

[81]  George Jackson,et al.  Statistical associating fluid theory for chain molecules with attractive potentials of variable range , 1997 .

[82]  Emina Kapetanović,et al.  Salt Effects of Lithium Chloride, Sodium Bromide, or Potassium Iodide on Liquid−Liquid Equilibrium in the System Water + 1-Butanol , 1997 .

[83]  K. Gubbins,et al.  Phase equilibria calculations with a modified SAFT equation of state. 1. Pure alkanes, alkanols, and water , 1996 .

[84]  Dimitrios P. Tassios,et al.  An Equation of State for Associating Fluids , 1996 .

[85]  R. Sadus RESEARCH NOTE Molecular simulation of the liquid-liquid equilibria of binary mixtures containing dipolar and non-polar components interacting via the Keesom potential , 1996 .

[86]  H. Tseng,et al.  Experimental and theoretical determination of vapor pressures of NaClKCl, NaBrKBr and NaClCaCl2 aqueous solutions at 298 to 343 K , 1996 .

[87]  David A. Fletcher,et al.  The United Kingdom Chemical Database Service , 1996, J. Chem. Inf. Comput. Sci..

[88]  P. Turq,et al.  REAL IONIC SOLUTIONS IN THE MEAN SPHERICAL APPROXIMATION. 1. SIMPLE SALTS IN THE PRIMITIVE MODEL , 1996 .

[89]  K. Gubbins,et al.  An Equation of State for Water from a Simplified Intermolecular Potential , 1995 .

[90]  G. Maurer,et al.  On the calculation of phase equilibria in aqueous two-phase systems containing ionic solutes , 1995 .

[91]  J. Arons,et al.  Water-Salt Phase Equilibria at Elevated Temperatures and Pressures: Model Development and Mixture Predictions , 1995 .

[92]  Yiping Tang,et al.  Salting effect in partially miscible systems of n-butanolwater and butanonewater 1. Determination and correlation of liquid-liquid equilibrium data , 1995 .

[93]  C. Dussap,et al.  Representation of vapour -liquid equilibria in water-alcohol-electrolyte mixtures with a modified UNIFAC group-contribution method , 1994 .

[94]  W. Fawcett,et al.  A simple model for the dielectric behaviour of polar solvents in the mean spherical approximation , 1993 .

[95]  H. Renon,et al.  Representation of excess properties of electrolyte solutions using a new equation of state , 1993 .

[96]  K. Gubbins,et al.  Physical theory for fluids of small associating molecules , 1992 .

[97]  M. Donohue,et al.  Equation of state with multiple associating sites for water and water-hydrocarbon mixtures , 1992 .

[98]  D. G. Archer,et al.  Thermodynamic Properties of the NaCl+H2O System. II. Thermodynamic Properties of NaCl(aq), NaCl⋅2H2(cr), and Phase Equilibria , 1992 .

[99]  Y. Rosenfeld,et al.  Relation between the free energy and the direct correlation function in the mean spherical approximation , 1991 .

[100]  T. Uemura,et al.  Vapor pressures of the water-lithium bromide-lithium iodide system , 1990 .

[101]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[102]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[103]  H. Renon,et al.  Development of a new cubic equation of state for phase equilibrium calculations , 1989 .

[104]  M. Donohue,et al.  An equation of state for electrolyte solutions. 1. Aqueous systems containing strong electrolytes , 1988 .

[105]  A. Teja,et al.  High pressure phase equilibria in the carbon dioxide-n-hexadecane and carbon dioxide-water systems , 1988 .

[106]  J. Prausnitz,et al.  Dielectric constants of fluid mixtures over a wide range of temperature and density , 1987 .

[107]  P. Cummings,et al.  Dielectric constant of dipolar hard sphere mixtures , 1986 .

[108]  M. Donohue,et al.  Thermodynamics of hydrogen‐bonded molecules: The associated perturbed anisotropic chain theory , 1986 .

[109]  Lawrence B. Evans,et al.  Thermodynamic representation of phase equilibria of mixed‐solvent electrolyte systems , 1986 .

[110]  R. L. Robinson,et al.  Equations of state : theories and applications , 1986 .

[111]  M. Wertheim,et al.  Fluids with highly directional attractive forces. III. Multiple attraction sites , 1986 .

[112]  M. Wertheim,et al.  Fluids with highly directional attractive forces. IV. Equilibrium polymerization , 1986 .

[113]  Anilesh Kumar Densities and apparent molar volumes of aqueous NaCl–KBr mixtures at 298.15 K , 1985 .

[114]  C. S. Patterson,et al.  Osmotic coefficients of aqueous lithium chloride and potassium chloride from their isopiestic ratios to sodium chloride at 45.degree.C , 1985 .

[115]  P. Vimalchand,et al.  Thermodynamics of quadrupolar molecules: the perturbed-anisotropic-chain theory , 1985 .

[116]  M. Wertheim,et al.  Fluids with highly directional attractive forces. I. Statistical thermodynamics , 1984 .

[117]  M. Wertheim,et al.  Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations , 1984 .

[118]  H. Friedman Theory of the dielectric constant of solutions , 1982 .

[119]  M. Uematsu,et al.  Static Dielectric Constant of Water and Steam , 1980 .

[120]  D. Goldsack,et al.  The viscosity of concentrated electrolyte solutions—III. A mixture law , 1977 .

[121]  L. Blum,et al.  Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function , 1977 .

[122]  K. Hiroike Supplement to Blum's theory for asymmetric electrolytes , 1977 .

[123]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[124]  R. W. Rousseau,et al.  The Correlation of Vapor-Liquid Equilibrium Data for Salt-Containing Systems , 1976 .

[125]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[126]  L. Blum,et al.  Mean spherical model for asymmetric electrolytes , 1975 .

[127]  H. Gibbard,et al.  Freezing points and related properties of electrolyte solutions. II. Mixtures of lithium chloride and sodium chloride in water , 1974 .

[128]  H. Gibbard,et al.  Liquid-vapor equilibrium of aqueous lithium chloride, from 25 to 100.deg. and from 1.0 to 18.5 molal, and related properties , 1973 .

[129]  Robert F. Platford,et al.  Osmotic coefficients of aqueous solutions of seven compounds at 0.deg. , 1973 .

[130]  W. Hamer,et al.  Osmotic Coefficients and Mean Activity Coefficients of Uni‐univalent Electrolytes in Water at 25°C , 1972 .

[131]  W. T. Lindsay,et al.  Thermodynamics of sodium chloride solutions at high temperatures , 1972 .

[132]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[133]  A. D. King,et al.  Solubility of water in compressed carbon dioxide, nitrous oxide, and ethane. Evidence for hydration of carbon dioxide and nitrous oxide in the gas phase , 1971 .

[134]  J. Lebowitz,et al.  Exact Solution of an Integral Equation for the Structure of a Primitive Model of Electrolytes , 1970 .

[135]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[136]  R. S. Ramalho,et al.  A Rapid Method for Obtaining Vapor-Liquid Equilibrium Data. Theoretical Aspects and Simple and Continuous Distillation Methods , 1961 .

[137]  F. A. Schimmel SOLUBILITIES OF LITHIUM CHLORIDE AND LITHIUM THIOCYANATE AT LOW TEMPERATURES , 1960 .

[138]  C. Stuart Patterson,et al.  545. The osmotic behaviour of representative aqueous salt solutions at 100 , 1960 .

[139]  H. Fröhlich,et al.  Theory of Dielectrics: Dielectric Constant and Dielectric Loss , 1960 .

[140]  Raymond M. Fuoss,et al.  Theory of dielectrics. , 1949 .

[141]  O. Redlich,et al.  On the thermodynamics of solutions; an equation of state; fugacities of gaseous solutions. , 1949, Chemical reviews.

[142]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[143]  Rodney P. Smith,et al.  The Boiling Point Elevation. IV. Potassium Bromide in Water1 , 1941 .

[144]  R. Wiebe,et al.  Vapor Phase Composition of Carbon Dioxide-Water Mixtures at Various Temperatures and at Pressures to 700 Atmospheres , 1941 .

[145]  J. Kirkwood The Dielectric Polarization of Polar Liquids , 1939 .

[146]  Rodney P. Smith,et al.  The Boiling Point Elevation. III. Sodium Chloride 1.0 to 4.0 M and 60 to 100 , 1939 .

[147]  Rodney P. Smith The Boiling Point Elevation. II. Sodium Chloride 0.05 to 1.0 M and 60 to 100 , 1939 .

[148]  H. Wirth The Partial Molal Volumes of Potassium Chloride, Potassium Bromide and Potassium Sulfate in Sodium Chloride Solutions , 1937 .

[149]  G. Scatchard,et al.  The Freezing Points of Aqueous Solutions. IV. Potassium, Sodium and Lithium Chlorides and Bromides , 1933 .

[150]  M. Born Volumen und Hydratationswärme der Ionen , 1920 .

[151]  W. Rodebush THE FREEZING POINTS OF CONCENTRATED SOLUTIONS AND THE FREE ENERGY OF SOLUTION OF SALTS. , 1918 .

[152]  Jessica Schulze,et al.  The Nature Of The Chemical Bond , 2016 .

[153]  Peter Beike,et al.  Intermolecular And Surface Forces , 2016 .

[154]  J. Trusler,et al.  Measurement and modeling of the phase behavior of the (carbon dioxide + water) mixture at temperatures from 298.15 K to 448.15 K , 2013 .

[155]  W. Marsden I and J , 2012 .

[156]  Maria M. Reif,et al.  Single-ion solvation : experimental and theoretical approaches to elusive thermodynamic quantities , 2011 .

[157]  A. Karimi,et al.  Master's Thesis , 2008 .

[158]  A. Galindo,et al.  Predicting the high-pressure phase equilibria of binary aqueous solutions of 1-butanol, n-butoxyethanol and n-decylpentaoxyethylene ether (C10E5) using the SAFT-HS approach , 1998 .

[159]  M. Donohue,et al.  Recent Advances in Modeling Thermodynamic Properties of Aqueous Strong Electrolyte Systems , 1997 .

[160]  J. Vera,et al.  Measurement and correlation of ion activity in aqueous single electrolyte solutions , 1996 .

[161]  B. Roos,et al.  Thermodynamic Activity Quantities in Aqueous Sodium and Potassium Chloride Solutions at 298.15 K up to a Molality of 2.0 mol kg^-1. , 1993 .

[162]  J. Ananthaswamy,et al.  Activity coefficients of KCl and ionic interactions in the system KCl–Me4NCl–H2O at 25, 35 and 45 °C , 1992 .

[163]  Maurizio Fermeglia,et al.  Unifac prediction of vapor-liquid equilibria in mixed solvent-salt systems , 1991 .

[164]  Tetsuro Ishii,et al.  Static dielectric constants of water + ethanol and water + 2-methyl-2-propanol mixtures from 0.1 to 300 MPa at 298.15 K , 1990 .

[165]  H. Wagner,et al.  Geschwindigkeit von Reaktionen teiloxidierter Kohlenwasserstoffe mit O-Atomen in der Gasphase I , 1982 .

[166]  V. Lobo Electrolyte solutions : literature data on thermodynamic and transport properties , 1981 .

[167]  S. Sandler Chemical and engineering thermodynamics , 1977 .

[168]  J. Prausnitz,et al.  Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems , 1975 .

[169]  H. Gibbard,et al.  Liquid-vapor equilibrium of aqueous sodium chloride, from 298 to 373.deg.K and from 1 to 6 mol kg-1, and related properties , 1974 .

[170]  J. M. Prausnitz,et al.  Dissociation Pressures of Gas Hydrates Formed by Gas Mixtures , 1972 .

[171]  C. Childs,et al.  Excess free energies of mixing at temperatures below 25°. Isopiestic measurements on the systems H2O-NaCl-Na2SO4 and H2O-NaCl-MgSO4 , 1971 .

[172]  J. Rowlinson Molecular Thermodynamics of Fluid-Phase Equilibria , 1969 .

[173]  J. Prausnitz,et al.  LOCAL COMPOSITIONS IN THERMODYNAMIC EXCESS FUNCTIONS FOR LIQUID MIXTURES , 1968 .

[174]  G. M. Wilson,et al.  Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing , 1964 .

[175]  J. McCoubrey,et al.  Intermolecular forces between unlike molecules. A more complete form of the combining rules , 1960 .

[176]  S. Green,et al.  Vapor-Liquid Equilibria of Formaldehyde-Methanol-Water , 1955 .

[177]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[178]  R. Bayer,et al.  I. Die Dampfdrücke des binären Systems Methylalkohol -Wasser , 1927 .