Discharge parameters and dominant electron conductivity mechanism in a low-pressure planar magnetron discharge

Parameters of a discharge sustained in a planar magnetron configuration with crossed electric and magnetic fields are studied experimentally and numerically. By comparing the data obtained in the experiment with the results of calculations made using the proposed theoretical model, conclusion was made about the leading role of the turbulence-driven Bohm electron conductivity in the low-pressure operation mode (up to 1 Pa) of the discharge in crossed electric and magnetic fields. A strong dependence of the width of the cathode sputter trench, associated with the ionization region of the magnetron discharge, on the discharge parameters was observed in the experiments. The experimental data were used as input parameters in the discharge model that describes the motion of secondary electrons across the magnetic field in the ionization region and takes into account the classical, near-wall, and Bohm mechanisms of electron conductivity.

[1]  Miran Mozetič,et al.  Behaviour of oxygen atoms near the surface of nanostructured Nb2O5 , 2007 .

[2]  A. Ivanov,et al.  Effect of plasma-wall recombination on the conductivity in Hall thrusters , 2002 .

[3]  André Anders,et al.  Handbook of plasma immersion ion implantation and deposition , 2004 .

[4]  M. De Handbuch der Physik , 1957 .

[5]  Miran Mozetic,et al.  Nanowire sensor response to reactive gas environment , 2008 .

[6]  P. Chabert,et al.  Enhanced plasma transport due to neutral depletion. , 2005, Physical review letters.

[7]  R. S. Robinson,et al.  Physics of closed drift thrusters , 1999 .

[8]  K. Ostrikov Surface science of plasma exposed surfaces: A challenge for applied plasma science , 2008 .

[9]  Kostya Ostrikov,et al.  Plasma-aided nanofabrication: where is the cutting edge? , 2007 .

[10]  H. Meuth,et al.  Radial current distribution at a planar magnetron cathode , 1988 .

[11]  J. Bradley Study of the plasma pre-sheath in magnetron discharges dominated by Bohm diffusion of electrons , 1998 .

[12]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[13]  Zhehui Wang,et al.  Geometrical aspects of a hollow-cathode planar magnetron , 1999 .

[14]  Michael Keidar,et al.  Stable plasma configurations in a cylindrical magnetron discharge , 2004 .

[15]  H. Wilhelmsson,et al.  Review of plasma physics: Vol. 1 (ed. M. A. Leontovich, Consultants Bureau, New York, 1965) pp. 326, $ 12.50 , 1966 .

[16]  Kostya Ostrikov,et al.  Colloquium: Reactive plasmas as a versatile nanofabrication tool , 2005 .

[17]  Michael Keidar,et al.  2D expansion of the low-density interelectrode vacuum arc plasma jet in an axial magnetic field , 1996 .

[18]  M. Keidar,et al.  Plasma flow and plasma–wall transition in Hall thruster channel , 2001 .

[19]  Igor Levchenko,et al.  Nanostructures of various dimensionalities from plasma and neutral fluxes , 2007 .

[20]  M. Keidar,et al.  Modeling of a high-power thruster with anode layer , 2004 .

[21]  A. Morozov,et al.  Fundamentals of Stationary Plasma Thruster Theory , 2000 .

[22]  M. Mozetič,et al.  Long-Range Ordering of Oxygen-Vacancy Planes in α-Fe2O3 Nanowires and Nanobelts , 2008 .

[23]  L. Garrigues,et al.  Low frequency oscillations in a stationary plasma thruster , 1998 .

[24]  S. Maniv Generalization of the model for the J‐V characteristics of dc sputtering discharges , 1986 .

[25]  H Conrads,et al.  Plasma generation and plasma sources , 2000 .

[26]  Igor Levchenko,et al.  Deterministic shape control in plasma-aided nanotip assembly , 2006 .

[27]  Yukikazu Itikawa,et al.  Cross Sections for Electron Collisions with Nitrogen Molecules , 2006 .

[28]  R. K. Wakerling,et al.  The characteristics of electrical discharges in magnetic fields , 1949 .

[29]  Kostya Ostrikov,et al.  Synthesis of functional nanoassemblies in reactive plasmas , 2006 .