Geometrically necessary dislocations and related kinematic hardening in gradient grained materials: A nonlocal crystal plasticity study

[1]  Jiaxi Jiang,et al.  Strength-ductility synergy in heterogeneous-structured metals and alloys , 2022, Matter.

[2]  Minsheng Huang,et al.  Multiscale discrete dislocation dynamics study of gradient nano-grained materials , 2022, International Journal of Plasticity.

[3]  N. Tsuji,et al.  Significant Bauschinger effect and back stress strengthening in an ultrafine grained pure aluminum fabricated by severe plastic deformation process , 2022, Scripta Materialia.

[4]  Bo Zhang,et al.  Generalized Aifantis strain gradient plasticity model with internal length scale dependence on grain size, sample size and strain , 2022, Acta Mechanica Sinica.

[5]  Hao Zhou,et al.  Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility , 2022, Acta Materialia.

[6]  David A. Knowles,et al.  A crystal plasticity model that accounts for grain size effects and slip system interactions on the deformation of austenitic stainless steels , 2022, International Journal of Plasticity.

[7]  Yin Zhang,et al.  Unraveling the origin of extra strengthening in gradient nanotwinned metals , 2022, Proceedings of the National Academy of Sciences.

[8]  B. Devincre,et al.  Grain size effect of FCC polycrystal: A new CPFEM approach based on surface geometrically necessary dislocations , 2022, International Journal of Plasticity.

[9]  Xiaolei Wu,et al.  Heterostructured Materials , 2021, Progress in Materials Science.

[10]  Shaohua Chen,et al.  On Strain Hardening Mechanism in Gradient Nanostructures , 2021, Heterostructured Materials.

[11]  G. Kang,et al.  The tension-compression behavior of gradient structured materials: A deformation-mechanism-based strain gradient plasticity model , 2021 .

[12]  Yilun Xu A non-local methodology for geometrically necessary dislocations and application to crack tips , 2021, International Journal of Plasticity.

[13]  Yuming He,et al.  On energetic and dissipative gradient effects within higher-order strain gradient plasticity: Size effect, passivation effect, and Bauschinger effect , 2021 .

[14]  N. Tsuji,et al.  Mechanical response of dislocation interaction with grain boundary in ultrafine-grained interstitial-free steel , 2021 .

[15]  Xiaolei Wu,et al.  Gradient and lamellar heterostructures for superior mechanical properties , 2021, MRS Bulletin.

[16]  C. Greiner,et al.  On the origin of microstructural discontinuities in sliding contacts: A discrete dislocation plasticity analysis , 2021 .

[17]  Xiaolei Wu,et al.  Heterogeneous materials: a new class of materials with unprecedented mechanical properties , 2017, Heterostructured Materials.

[18]  Hao Zhou,et al.  Influence of Gradient Structure Volume Fraction on the Mechanical Properties of Pure Copper , 2015, Heterostructured Materials.

[19]  F. Yuan,et al.  Atomistic Tensile Deformation Mechanisms of Fe with Gradient Nano-Grained Structure , 2015, Heterostructured Materials.

[20]  Xiaolei Wu,et al.  Synergetic Strengthening by Gradient Structure , 2014, Heterostructured Materials.

[21]  H. Duan,et al.  Dislocation-grain boundary interaction in metallic materials: Competition between dislocation transmission and dislocation source activation , 2020, Journal of the Mechanics and Physics of Solids.

[22]  Huajian Gao,et al.  Heterostructured materials: superior properties from hetero-zone interaction , 2020, Materials Research Letters.

[23]  Huajian Gao,et al.  Towards understanding the structure–property relationships of heterogeneous-structured materials , 2020 .

[24]  Xiaolei Wu,et al.  Ductility and strain hardening in gradient and lamellar structured materials , 2020 .

[25]  K. Lu,et al.  Friction of stable gradient nano-grained metals , 2020 .

[26]  Huajian Gao,et al.  Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys , 2020, Nature Reviews Materials.

[27]  G. Kang,et al.  Crystal plasticity finite element analysis of gradient nanostructured TWIP steel , 2020, International Journal of Plasticity.

[28]  Wei Liu,et al.  The grain size and orientation dependence of geometrically necessary dislocations in polycrystalline aluminum during monotonic deformation: Relationship to mechanical behavior , 2020 .

[29]  F. Yuan,et al.  Multiple mechanism based constitutive modeling of gradient nanograined material , 2020 .

[30]  D. Field,et al.  Effect of gradient microstructures on strengthening and toughening of AZ31 , 2020 .

[31]  J. Segurado,et al.  Simulation of the Hall-Petch effect in FCC polycrystals by means of strain gradient crystal plasticity and FFT homogenization , 2019, Journal of the Mechanics and Physics of Solids.

[32]  T. Bieler,et al.  Effect of slip transmission at grain boundaries in Al bicrystals , 2019, International Journal of Plasticity.

[33]  T. Bieler,et al.  A criterion for slip transfer at grain boundaries in Al , 2019, 1912.02925.

[34]  Min Song,et al.  Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures , 2019, International Journal of Plasticity.

[35]  George Z. Voyiadjis,et al.  Strain gradient continuum plasticity theories: Theoretical, numerical and experimental investigations , 2019, International Journal of Plasticity.

[36]  Hyung Keun Park,et al.  Microstructural tailoring in reverse gradient-structured copper sheet using single-roll angular-rolling and subsequent annealing , 2019, Materials Science and Engineering: A.

[37]  Xiaolei Wu,et al.  Perspective on hetero-deformation induced (HDI) hardening and back stress , 2019, Materials Research Letters.

[38]  Hyung Keun Park,et al.  Unique microstructure and simultaneous enhancements of strength and ductility in gradient-microstructured Cu sheet produced by single-roll angular-rolling , 2019, Acta Materialia.

[39]  T. Bieler,et al.  An analysis of (the lack of) slip transfer between near-cube oriented grains in pure Al , 2019, International Journal of Plasticity.

[40]  F. Roters,et al.  Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper , 2019, International Journal of Plasticity.

[41]  Benoit Devincre,et al.  Effects of the grain size and shape on the flow stress: A dislocation dynamics study , 2019, International Journal of Plasticity.

[42]  J. Llorca,et al.  Grain boundary strengthening of FCC polycrystals , 2019, Journal of Materials Research.

[43]  Liucheng Zhou,et al.  Deformation mechanisms based constitutive modelling and strength-ductility mapping of gradient nano-grained materials , 2019, Materials Science and Engineering: A.

[44]  J. Zhao,et al.  Grain boundary effect on nanoindentation: A multiscale discrete dislocation dynamics model , 2019, Journal of the Mechanics and Physics of Solids.

[45]  S. Nikolov,et al.  DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale , 2018, Computational Materials Science.

[46]  Z. Zhang,et al.  High-cycle fatigue behavior of TWIP steel with graded grains: breaking the rule of mixture , 2018, Materials Research Letters.

[47]  Huajian Gao,et al.  Extra strengthening and work hardening in gradient nanotwinned metals , 2018, Science.

[48]  Hong Wu,et al.  Strengthening mechanism of gradient nanostructured body-centred cubic iron film: From inverse Hall-Petch to classic Hall-Petch , 2018, Computational Materials Science.

[49]  Huajian Gao,et al.  Mechanical properties and optimal grain size distribution profile of gradient grained nickel , 2018, Acta Materialia.

[50]  Chong-xiang Huang,et al.  Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates , 2018, Materials Science and Engineering: A.

[51]  F. Yuan,et al.  Extraordinary Bauschinger Effect in Gradient Structured Copper , 2018, Heterostructured Materials.

[52]  Q. Li,et al.  Mechanical behavior of structurally gradient nickel alloy , 2018 .

[53]  Bin Liu,et al.  Molecular dynamics simulations of tensile deformation of gradient nano-grained copper film , 2018 .

[54]  J. Segurado,et al.  An analysis of the influence of grain size on the strength of FCC polycrystals by means of computational homogenization , 2018, 1801.05155.

[55]  D. Raabe,et al.  Multiple slip dislocation patterning in a dislocation-based crystal plasticity finite element method , 2018 .

[56]  David J. Dunstan,et al.  Material length scale of strain gradient plasticity: A physical interpretation , 2017 .

[57]  Annie Ruimi,et al.  Stress/strain gradient plasticity model for size effects in heterogeneous nano-microstructures , 2017 .

[58]  Yujie Wei,et al.  Optimal stress and deformation partition in gradient materials for better strength and tensile ductility: A numerical investigation , 2017, Scientific Reports.

[59]  B. Bednarcyk,et al.  Grain size-dependent crystal plasticity constitutive model for polycrystal materials. , 2017, Materials science & engineering. A, Structural materials : properties, microstructure and processing.

[60]  Z. Zhang,et al.  Improvement of low-cycle fatigue resistance in TWIP steel by regulating the grain size and distribution , 2017 .

[61]  Ting Zhu,et al.  Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals , 2017 .

[62]  Ricardo A. Lebensohn,et al.  Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms , 2016 .

[63]  Huajian Gao,et al.  Gradient plasticity in gradient nano-grained metals , 2016 .

[64]  Yuntian Zhu,et al.  Synergetic strengthening far beyond rule of mixtures in gradient structured aluminum rod , 2016 .

[65]  A. Hunter,et al.  Numerical implementation of a crystal plasticity model with dislocation transport for high strain rate applications , 2016 .

[66]  F. Yuan,et al.  Back stress strengthening and strain hardening in gradient structure , 2016 .

[67]  P. Chakraborti,et al.  Effect of deformation mode and grain size on Bauschinger behavior of annealed copper , 2016 .

[68]  Mark A. Kenamond,et al.  Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions , 2016 .

[69]  H. Zbib,et al.  A dislocation-based model for deformation and size effect in multi-phase steels , 2015 .

[70]  A. McBride,et al.  Review on slip transmission criteria in experiments and crystal plasticity models , 2015, Journal of Materials Science.

[71]  T. Böhlke,et al.  Gradient crystal plasticity including dislocation-based work-hardening and dislocation transport , 2015 .

[72]  Bingqing Cheng,et al.  A new dislocation-density-function dynamics scheme for computational crystal plasticity by explicit consideration of dislocation elastic interactions , 2015 .

[73]  I. Beyerlein,et al.  Incorporating interface affected zones into crystal plasticity , 2015 .

[74]  A. Wilkinson,et al.  Measurement of probability distributions for internal stresses in dislocated crystals , 2014 .

[75]  K. Lu Making strong nanomaterials ductile with gradients , 2014, Science.

[76]  Dierk Raabe,et al.  Dislocation density distribution around an wedge indent in single- crystalline nickel: Comparing non-local crystal plasticity finite element predictions with experiments , 2014 .

[77]  Fuping Yuan,et al.  Extraordinary strain hardening by gradient structure , 2014, Proceedings of the National Academy of Sciences.

[78]  Vasily V. Bulatov,et al.  Grain boundary energy function for fcc metals , 2014 .

[79]  Michael Zaiser,et al.  Continuum dislocation dynamics: Towards a physical theory of crystal plasticity , 2014 .

[80]  C. Bronkhorst,et al.  A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions , 2013 .

[81]  A. Soh,et al.  Modeling of the plastic deformation of nanostructured materials with grain size gradient , 2012 .

[82]  R. H. Wagoner,et al.  Simulation of polycrystal deformation with grain and grain boundary effects , 2011 .

[83]  Xiong Zhang,et al.  Thickness effects in polycrystalline thin films: Surface constraint versus interior constraint , 2011 .

[84]  R. Quey,et al.  Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing , 2011 .

[85]  N. Tao,et al.  Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper , 2011, Science.

[86]  K. Runesson,et al.  Modeling of polycrystals with gradient crystal plasticity: A comparison of strategies , 2010 .

[87]  Minsheng Huang,et al.  Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall-Petch effect , 2009 .

[88]  M. Geers,et al.  On a Proper Account of First‐ and Second‐Order Size Effects in Crystal Plasticity , 2009 .

[89]  Thierry Hoc,et al.  Modeling dislocation storage rates and mean free paths in face-centered cubic crystals , 2008 .

[90]  F. Dunne,et al.  Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys , 2007 .

[91]  E. Aifantis,et al.  Modelling size effects using 3D density-based dislocation dynamics , 2007 .

[92]  Horacio Dante Espinosa,et al.  Discrete dislocation dynamics simulations to interpret plasticity size and surface effects in freestanding FCC thin films , 2006 .

[93]  Dierk Raabe,et al.  A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations , 2006 .

[94]  M. Zaiser,et al.  Some steps towards a continuum representation of 3D dislocation systems , 2006 .

[95]  M. Zaiser,et al.  Fluctuation phenomena in crystal plasticity—a continuum model , 2005, cond-mat/0505593.

[96]  Julia R. Greer,et al.  Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients , 2005 .

[97]  Mgd Marc Geers,et al.  Non-local crystal plasticity model with intrinsic SSD and GND effects , 2004 .

[98]  W. Brekelmans,et al.  Scale dependent crystal plasticity framework with dislocation density and grain boundary effects , 2004 .

[99]  Vasily V. Bulatov,et al.  On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals , 2004 .

[100]  Esteban P. Busso,et al.  A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts , 2004 .

[101]  Michael Zaiser,et al.  Spatial Correlations and Higher-Order Gradient Terms in a Continuum Description of Dislocation Dynamics , 2003 .

[102]  Amit Acharya,et al.  Geometrically necessary dislocations, hardening, and a simple gradient theory of crystal plasticity , 2003 .

[103]  D. Parks,et al.  Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation , 2002 .

[104]  M. Zaiser,et al.  Chapter 56 Long-range internal stresses, dislocation patterning and work-hardening in crystal plasticity , 2002 .

[105]  Morton E. Gurtin,et al.  A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations , 2002 .

[106]  Amit Acharya,et al.  Grain-size effect in viscoplastic polycrystals at moderate strains , 2000 .

[107]  I. Groma,et al.  Probability distribution of internal stresses in parallel straight dislocation systems , 1998 .

[108]  V. Stolyarov,et al.  Cyclic response of ultrafine-grained copper at constant plastic strain amplitude , 1997 .

[109]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[110]  Ian M. Robertson,et al.  Prediction of slip transfer mechanisms across grain boundaries , 1989 .

[111]  G. Weng A micromechanical theory of grain-size dependence in metal plasticity , 1983 .

[112]  N. Hansen,et al.  The Strain and Grain Size Dependence of the Flow Stress of Copper , 1982 .

[113]  H. Mughrabi,et al.  Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities , 1979 .

[114]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[115]  R. Armstrong,et al.  The plastic deformation of polycrystalline aggregates , 1962 .

[116]  E. Orowan Zur Kristallplastizität. I , 1934 .