A crystal plasticity based constitutive model accounting for R phase and two-step phase transition of polycrystalline NiTi shape memory alloys

[1]  T. Fu,et al.  Extension of micromechanics model and micro-macro description to shape memory effect of NiTi SMAs , 2020 .

[2]  D. Fang,et al.  Modeling the martensite reorientation and resulting zero/negative thermal expansion of shape memory alloys , 2019, Journal of the Mechanics and Physics of Solids.

[3]  G. Kang,et al.  A micromechanical model for the grain size dependent super-elasticity degeneration of NiTi shape memory alloys , 2018, Mechanics of Materials.

[4]  P. Zeng,et al.  Micromechanical modeling on thermomechanical coupling of cyclically deformed superelastic NiTi shape memory alloy , 2018, International Journal of Plasticity.

[5]  P. Collins,et al.  Microscale phase field modeling of the martensitic transformation during cyclic loading of NiTi single crystal , 2018, International Journal of Solids and Structures.

[6]  G. Kang,et al.  A micromechanical constitutive model for grain size dependent thermo-mechanically coupled inelastic deformation of super-elastic NiTi shape memory alloy , 2018, International Journal of Plasticity.

[7]  V. Levitas,et al.  Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with interfacial stresses at finite strains , 2018 .

[8]  A. Nespoli,et al.  Implementation of a constitutive model for different annealed superelastic SMA wires with rhombohedral phase , 2017 .

[9]  H. Sehitoglu,et al.  Elastocaloric cooling capacity of shape memory alloys – Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation , 2017 .

[10]  Wael Zaki,et al.  A thermomechanically coupled finite deformation constitutive model for shape memory alloys based on Hencky strain , 2017 .

[11]  N. Hu,et al.  A micro-macro description for pseudoelasticity of NiTi SMAs subjected to nonproportional deformations , 2017 .

[12]  S. Calloch,et al.  A uniaxial constitutive model for superelastic NiTi SMA including R-phase and martensite transformations and thermal effects , 2017 .

[13]  V. Levitas,et al.  Triaxial-Stress-Induced Homogeneous Hysteresis-Free First-Order Phase Transformations with Stable Intermediate Phases. , 2017, Physical review letters.

[14]  W. Zaki,et al.  A review of modeling techniques for advanced effects in shape memory alloy behavior , 2016 .

[15]  G. Kang,et al.  A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals , 2015 .

[16]  B. Verlinden,et al.  Effect of post-deformation annealing on the R-phase transformation temperatures in NiTi shape memory alloys , 2015 .

[17]  S. Calloch,et al.  Experimental characterisation of three-phase NiTi wires under tension , 2014 .

[18]  Y. Zhong,et al.  Phase-field modeling of martensitic microstructure in NiTi shape memory alloys , 2014 .

[19]  B. Verlinden,et al.  R-phase transformation in NiTi alloys , 2014 .

[20]  G. Kang,et al.  Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation , 2014 .

[21]  Kai Li,et al.  R-phase transition and related mechanical properties controlled by low-temperature aging treatment in a Ti–50.8 at.% Ni thin wire , 2014 .

[22]  Petr Šittner,et al.  Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings , 2012 .

[23]  O. Shchyglo,et al.  Martensitic phase transformations in Ni–Ti-based shape memory alloys: The Landau theory , 2012 .

[24]  Tarak Ben Zineb,et al.  Simulation of the effect of elastic precipitates in SMA materials based on a micromechanical model , 2012 .

[25]  R. Heinen,et al.  Micromechanical modeling of NiTi shape memory alloys including austenite, R-phase, and martensite , 2012 .

[26]  L. G. Machado,et al.  Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys , 2012 .

[27]  P. Ji,et al.  1-D constitutive model for evolution of stress-induced R-phase and localized Lüders-like stress-induced martensitic transformation of super-elastic NiTi wires , 2012 .

[28]  G. Eggeler,et al.  On the Stress-Induced Formation of R-Phase in Ultra-Fine-Grained Ni-Rich NiTi Shape Memory Alloys , 2011 .

[29]  Xingzhe Wang,et al.  A kinetics model for martensite variants rearrangement in ferromagnetic shape memory alloys , 2010 .

[30]  Yonggang Huang,et al.  A finite strain elastic–viscoplastic self-consistent model for polycrystalline materials , 2010 .

[31]  D. Lagoudas,et al.  Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys , 2009 .

[32]  P. Papadopoulos,et al.  Constitutive modeling and finite element approximation of B2-R-B19′ phase transformations in Nitinol polycrystals , 2009 .

[33]  M. Peigney A non-convex lower bound on the effective energy of polycrystalline shape memory alloys , 2009 .

[34]  Alain Molinari,et al.  Homogenization of elastic-viscoplastic heterogeneous materials : Self-consistent and Mori-Tanaka schemes , 2009 .

[35]  K. Hackl,et al.  An upper bound to the free energy of n-variant polycrystalline shape memory alloys , 2008 .

[36]  Yongjun He,et al.  A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals , 2008 .

[37]  Jinghong Fan,et al.  A microstructure-based constitutive model for the pseudoelastic behavior of NiTi SMAs , 2008 .

[38]  L. Brinson,et al.  A three-dimensional phenomenological model for martensite reorientation in shape memory alloys , 2007 .

[39]  Wael Zaki,et al.  A three-dimensional model of the thermomechanical behavior of shape memory alloys , 2007 .

[40]  Dimitris C. Lagoudas,et al.  A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite , 2007 .

[41]  Alessandro Reali,et al.  A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity , 2007 .

[42]  V. Novák,et al.  Stress-Strain-Temperature Behavior Due to B2-R-B19′ Transformation in NiTi Polycrystals , 2006 .

[43]  Dimitris C. Lagoudas,et al.  Shape memory alloys, Part II: Modeling of polycrystals , 2006 .

[44]  V. Novák,et al.  R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals , 2006 .

[45]  L. Brinson,et al.  Shape memory alloys, Part I: General properties and modeling of single crystals , 2006 .

[46]  T Prakash G. Thamburaja,et al.  Martensitic reorientation and shape-memory effect in initially textured polycrystalline Ti–Ni sheet , 2005 .

[47]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[48]  T. P. G. Thamburaja Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys , 2005 .

[49]  Dimitris C. Lagoudas,et al.  Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs , 2004 .

[50]  H. Sehitoglu,et al.  Crystallography of the B2 → R → B19′ phase transformations in NiTi , 2004 .

[51]  Lallit Anand,et al.  Thermal effects in the superelasticity of crystalline shape-memory materials , 2003 .

[52]  Amine Ouaar,et al.  Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms , 2003 .

[53]  T. P. G. Thamburaja,et al.  Superelastic behavior in tension–torsion of an initially-textured Ti–Ni shape-memory alloy , 2002 .

[54]  K. K. Mahesh,et al.  Effect of thermal cycling on R-phase stability in a NiTi shape memory alloy , 2002 .

[55]  G. Puglisi,et al.  Rate independent hysteresis in a bi-stable chain , 2002 .

[56]  H. Maier,et al.  Shape memory and pseudoelastic behavior of 51.5%Ni-Ti single crystals in solutionized and overaged state , 2001 .

[57]  Yong Liu,et al.  Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy , 2001 .

[58]  T Prakash G. Thamburaja,et al.  Polycrystalline shape-memory materials: effect of crystallographic texture , 2001 .

[59]  P. Šittner,et al.  Thermomechanical behavior of shape memory alloy under complex loading conditions , 1999 .

[60]  George J. Weng,et al.  A self-consistent model for the stress-strain behavior of shape-memory alloy polycrystals , 1998 .

[61]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[62]  P. McCormick,et al.  Three stage transformation behaviour in aged NiTi , 1993 .

[63]  Shuichi Miyazaki,et al.  Shape-memory effect and pseudoelasticity associated with the R-phase transition in Ti-50·5 at.% Ni single crystals , 1988 .

[64]  S. Ahzi,et al.  A self consistent approach of the large deformation polycrystal viscoplasticity , 1987 .

[65]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[66]  S. Nemat-Nasser,et al.  Rate-dependent, finite elasto-plastic deformation of polycrystals , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[67]  Salamon,et al.  Premartensitic phases of Ti50Ni47Fe3. , 1985, Physical review. B, Condensed matter.

[68]  Shuichi Miyazaki,et al.  Mechanical behaviour associated with the premartensitic rhombohedral-phase transition in a Ti50Ni47Fe3alloy , 1985 .

[69]  T. Iwakuma,et al.  Finite elastic-plastic deformation of polycrystalline metals , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[70]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[71]  John W. Hutchinson,et al.  Elastic-plastic behaviour of polycrystalline metals and composites , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[72]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .

[73]  Bernard Budiansky,et al.  THEORETICAL PREDICTION OF PLASTIC STRAINS OF POLYCRYSTALS , 1961 .

[74]  E. Kröner Zur plastischen verformung des vielkristalls , 1961 .

[75]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[76]  W. Zaki,et al.  A review of constitutive models and modeling techniques for shape memory alloys , 2016 .

[77]  Sefi Givli,et al.  Structures undergoing discrete phase transformation , 2013 .

[78]  Lev Truskinovsky,et al.  Mechanics of a discrete chain with bi-stable elements , 2000 .

[79]  Qingping Sun,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. I: Derivation of general relations , 1993 .

[80]  Keh Chih Hwang,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. II: Study of the individual phenomena , 1993 .

[81]  P. Lipinski,et al.  Elastoplasticity of micro-inhomogeneous metals at large strains , 1989 .