A new approach to characterizing and modeling the high cycle fatigue properties of cast materials based on self-heating measurements under cyclic loadings

Abstract The present paper proposes, a new model for high cycle fatigue of metallic cast materials (i.e . , containing initial casting micro-flaws). This model is developed in a probabilistic two-scale framework taking into account the presence of a population of initial micro-flaws by an indirect approach. The proposed model not only accounts for the failure of samples under high cycle loadings, but also for the thermal effects during cycling in a unified theoretical framework. Thus, an ad hoc identification procedure, essentially based on self-heating tests under cyclic loadings, is proposed. The performance of the proposed model is estimated by comparing experimental and theoretical results in the case of classical fatigue tests on a cast copper–aluminum alloy. The results are very promising.

[1]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  D. Regener,et al.  Computational microstructure analyzing technique for quantitative characterization of shrinkage and gas pores in pressure die cast AZ91 magnesium alloys , 2005 .

[3]  Jean Lemaitre,et al.  Damage 90: a post processor for crack initiation , 1994 .

[4]  B. Yang,et al.  Temperature evolution during fatigue damage , 2005 .

[5]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[6]  村上 敬宜 Metal fatigue : effects of small defects and nonmetallic inclusions , 2002 .

[7]  Rodrigue Desmorat,et al.  Two scale damage model and related numerical issues for thermo-mechanical High Cycle Fatigue , 2007 .

[8]  François Hild,et al.  Identification of the scatter in high cycle fatigue from temperature measurements , 2004 .

[9]  Minh Phong Luong,et al.  Infrared thermography of fatigue in metals , 1992, Defense, Security, and Sensing.

[10]  André Chrysochoos,et al.  An infrared image processing to analyse the calorific effects accompanying strain localisation , 2000 .

[11]  E. Kröner Zur plastischen verformung des vielkristalls , 1961 .

[12]  J.-C. Krapez,et al.  Thermography detection of early thermal effects during fatigue tests of steel and aluminum samples , 2002 .

[13]  A. Pineau,et al.  SHORT CRACK BEHAVIOUR IN NODULAR CAST IRON , 1984 .

[14]  K. Trustrum,et al.  Statistical approach to brittle fracture , 1977 .

[15]  Y. Murakami Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions , 2002 .

[16]  F. Hild,et al.  Probabilistic multiscale models and measurements of self-heating under multiaxial high cycle fatigue , 2010 .

[17]  A. Gokhale,et al.  Quantitative characterization of spatial arrangement of shrinkage and gas (air) pores in cast magnesium alloys , 2001 .

[18]  François Hild,et al.  A probabilistic two-scale model for high-cycle fatigue life predictions , 2005 .

[19]  W. Weibull A statistical theory of the strength of materials , 1939 .

[20]  François Hild,et al.  Hétérogénéité des contraintes et rupture des matériaux fragiles , 1992 .

[21]  S. L. Phoenix,et al.  Weibull strength statistics for graphite fibres measured from the break progression in a model graphite/glass/epoxy microcomposite , 1991 .

[22]  André Galtier,et al.  Influence de la microstructure des aciers sur leur propriétés mécaniques , 2002 .

[23]  P. Wilcox,et al.  AIP Conference Proceedings , 2012 .

[24]  F. Hild,et al.  Prediction of self-heating measurements under proportional and non-proportional multiaxial cyclic loadings , 2007 .

[25]  Sylvain Calloch,et al.  Influence of hardening type on self-heating of metallic materials under cyclic loadings at low amplitude , 2009 .

[26]  Raffaella Sesana,et al.  A new iteration method for the thermographic determination of fatigue limit in steels , 2005 .

[27]  Rémi Munier Etude de la fatigue des aciers laminés à partir de l'auto-échauffement sous sollicitation cyclique : essais, observations, modélisation et influence d'une pré-déformation plastique , 2012 .

[28]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[29]  F. Hild,et al.  Determination of an HCF criterion by thermal measurements under biaxial cyclic loading , 2007 .

[30]  Dominique Jeulin,et al.  Modeles morphologiques de structures aleatoires et de changement d'echelle , 1991 .

[31]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[32]  Yves Nadot,et al.  Multiaxial fatigue limit criterion for defective materials , 2006 .

[33]  Antonino Risitano,et al.  Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components , 2000 .

[34]  Hervé Pron,et al.  Caractérisation par thermographie infrarouge du comportement d’éprouvettes en acier sollicitées en fatigue , 2010 .

[35]  François Hild,et al.  HIGH-CYCLE FATIGUE BEHAVIOUR OF SPHEROIDAL GRAPHITE CAST IRON , 1998 .

[36]  Chengwei Wu,et al.  A new application of the infrared thermography for fatigue evaluation and damage assessment , 2012 .

[37]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[38]  An investigation of ship propeller fatigue , 1981 .