Animal models for muscular dystrophy: valuable tools for the development of therapies.

Since the identification of dystrophin as the causative factor in Duchenne muscular dystrophy, an increasing amount of information on the molecular basis of muscular dystrophies has facilitated the division of these heterogeneous disorders into distinct groups. As more light is being shed on the genes and proteins involved in muscular dystrophy, diagnosis of patients has improved enormously. In addition to naturally occurring animal models, a number of genetically engineered murine models for muscular dystrophy have been generated. These animal models have provided valuable clues to the understanding of the pathogenesis of these disorders. Furthermore, as therapeutic approaches are being developed, mutant animals represent good models in which they can be tested. The present review focuses on the recent advancements of gene transfer-based strategies, with a special emphasis on animal models for Duchenne and limb-girdle muscular dystrophies.

[1]  K. Campbell,et al.  Molecular basis of muscular dystrophies , 2000, Muscle & nerve.

[2]  K. Campbell,et al.  Contrast agent‐enhanced magnetic resonance imaging of skeletal muscle damage in animal models of muscular dystrophy , 2000, Magnetic resonance in medicine.

[3]  K. Campbell,et al.  Early adenovirus-mediated gene transfer effectively prevents muscular dystrophy in alpha-sarcoglycan-deficient mice , 2000, Gene Therapy.

[4]  D. Duan,et al.  Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  W. T. Bartlett,et al.  In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide , 2000, Nature Biotechnology.

[6]  T. Rando,et al.  Rescue of dystrophin expression in mdx mouse muscle by RNA/DNA oligonucleotides. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Juan Li,et al.  Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization , 2000, Nature Medicine.

[8]  H. Hama,et al.  Biochemical evidence for association of dystrobrevin with the sarcoglycan-sarcospan complex as a basis for understanding sarcoglycanopathy. , 2000, Human molecular genetics.

[9]  A. Benabid,et al.  Muscle transfection by electroporation with high-voltage and short-pulse currents provides high-level and long-lasting gene expression. , 2000, Human gene therapy.

[10]  Urtizberea Ja Therapies in Muscular Dystrophy: Current Concepts and Future Prospects , 2000 .

[11]  J. Urtizberea Therapies in Muscular Dystrophy: Current Concepts and Future Prospects , 2000, European Neurology.

[12]  M. Martone,et al.  Altered membrane proteins and permeability correlate with cardiac dysfunction in cardiomyopathic hamsters. , 2000, American journal of physiology. Heart and circulatory physiology.

[13]  J. Mendell,et al.  Phase I clinical trial utilizing gene therapy for limb girdle muscular dystrophy: alpha-, beta-, gamma-, or delta-sarcoglycan gene delivered with intramuscular instillations of adeno-associated vectors. , 2000, Human gene therapy.

[14]  Hiroshi Yamamoto,et al.  Immune response to adenovirus-delivered antigens upregulates utrophin and results in mitigation of muscle pathology in mdx mice. , 2000, Human gene therapy.

[15]  J. Wolff,et al.  Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor‐mediated process , 2000, The journal of gene medicine.

[16]  J. Huard,et al.  Matching host muscle and donor myoblasts for myosin heavy chain improves myoblast transfer therapy , 2000, Gene Therapy.

[17]  K. Campbell,et al.  Sarcospan-Deficient Mice Maintain Normal Muscle Function , 2000, Molecular and Cellular Biology.

[18]  N. Laing,et al.  Severe γ-sarcoglycanopathy caused by a novel missense mutation and a large deletion , 2000, Neuromuscular Disorders.

[19]  J. Chamberlain,et al.  Developments in gene therapy for muscular dystrophy , 2000, Microscopy research and technique.

[20]  H. Sweeney,et al.  Rescue of skeletal muscles of gamma-sarcoglycan-deficient mice with adeno-associated virus-mediated gene transfer. , 2000, Molecular therapy : the journal of the American Society of Gene Therapy.

[21]  E. McNally,et al.  Sarcoglycans in muscular dystrophy , 2000, Microscopy research and technique.

[22]  S. Takeda,et al.  Merosin and congenital muscular dystrophy , 2000, Microscopy research and technique.

[23]  K. Davies,et al.  Prevention of the dystrophic phenotype in dystrophin/utrophin-deficient muscle following adenovirus-mediated transfer of a utrophin minigene , 2000, Gene Therapy.

[24]  M. Iadarola,et al.  Genomic integration and gene expression by a modified adenoviral vector , 2000, Nature Biotechnology.

[25]  M. Metzker,et al.  Optimization of the helper-dependent adenovirus system for production and potency in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Negri,et al.  Disruption of heart sarcoglycan complex and severe cardiomyopathy caused by β sarcoglycan mutations , 2000, Journal of medical genetics.

[27]  D. Dressman,et al.  Full Functional Rescue of a Complete Muscle (TA) in Dystrophic Hamsters by Adeno-Associated Virus Vector-Directed Gene Therapy , 2000, Journal of Virology.

[28]  K. Campbell,et al.  Disruption of the beta-sarcoglycan gene reveals pathogenetic complexity of limb-girdle muscular dystrophy type 2E. , 2000, Molecular cell.

[29]  E. Engvall,et al.  Sarcoglycan Isoforms in Skeletal Muscle* , 1999, The Journal of Biological Chemistry.

[30]  K. Davies,et al.  A second promoter provides an alternative target for therapeutic up-regulation of utrophin in Duchenne muscular dystrophy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  I. Kovesdi,et al.  Extended tropism of an adenoviral vector does not circumvent the maturation‐dependent transducibility of mouse skeletal muscle , 1999, The journal of gene medicine.

[32]  E. Mercuri,et al.  Cardiomyopathy in Duchenne, Becker, and sarcoglycanopathies: A role for coronary dysfunction? , 1999, Muscle & nerve.

[33]  K. Schwartz,et al.  The IVth workshop on Duchenne muscular dystrophy gene therapy , 1999, The journal of gene medicine.

[34]  S. Carbonetto,et al.  Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses , 1999, Nature Genetics.

[35]  V. Dubowitz 68th ENMC international workshop (5th international workshop): On congenital muscular dystrophy, 9-11 April 1999, Naarden, The Netherlands. , 1999, Neuromuscular disorders : NMD.

[36]  K. Bushby,et al.  Dysferlin deletion in SJL mice (SJL-Dysf) defines a natural model for limb girdle muscular dystrophy 2B , 1999, Nature Genetics.

[37]  A. Amalfitano,et al.  Next-generation adenoviral vectors: new and improved , 1999, Gene Therapy.

[38]  R. Mulligan,et al.  Dystrophin expression in the mdx mouse restored by stem cell transplantation , 1999, Nature.

[39]  H. Hama,et al.  Loss of the sarcoglycan complex and sarcospan leads to muscular dystrophy in beta-sarcoglycan-deficient mice. , 1999, Human molecular genetics.

[40]  J. Chamberlain,et al.  Improved Production of Gutted Adenovirus in Cells Expressing Adenovirus Preterminal Protein and DNA Polymerase , 1999, Journal of Virology.

[41]  K. Campbell,et al.  Disruption of the Sarcoglycan–Sarcospan Complex in Vascular Smooth Muscle A Novel Mechanism for Cardiomyopathy and Muscular Dystrophy , 1999, Cell.

[42]  R. Kaufman,et al.  Correction of genetic disease by making sense from nonsense. , 1999, The Journal of clinical investigation.

[43]  H. Sweeney,et al.  Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. , 1999, The Journal of clinical investigation.

[44]  Harry Hines Boulevard,et al.  Role for α-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies , 1999, Nature Cell Biology.

[45]  Simon C Watkins,et al.  Herpes simplex virus vector‐mediated dystrophin gene transfer and expression in MDX mouse skeletal muscle , 1999, The journal of gene medicine.

[46]  E. Hoffman,et al.  Polylysine modification of adenoviral fiber protein enhances muscle cell transduction. , 1999, Human gene therapy.

[47]  G. Dickson,et al.  Enhanced expression of recombinant dystrophin following intramuscular injection of Epstein–Barr virus (EBV)-based mini-chromosome vectors in mdx mice , 1999, Gene Therapy.

[48]  B. Roy,et al.  Successful myoblast transplantation in fibrotic muscles: no increased impairment by the connective tissue. , 1999, Transplantation.

[49]  S. Gammeltoft,et al.  Activation of utrophin promoter by heregulin via the ets-related transcription factor complex GA-binding protein alpha/beta. , 1999, Molecular biology of the cell.

[50]  K. Davies,et al.  Adenovirus-mediated utrophin gene transfer mitigates the dystrophic phenotype of mdx mouse muscles. , 1999, Human gene therapy.

[51]  J. Puymirat,et al.  Myoblast transplantations lead to the expression of the laminin α2 chain in normal and dystrophic (dy/dy) mouse muscles , 1999, Gene Therapy.

[52]  R. Manservigi,et al.  Replication-defective herpes simplex virus vectors for neurotrophic factor gene transfer in vitro and in vivo , 1999, Gene Therapy.

[53]  F. Tomé,et al.  The Saga of Congenital Muscular Dystrophy , 1999 .

[54]  M. Fiszman,et al.  Gene delivery to the myocardium by intrapericardial injection , 1999, Gene Therapy.

[55]  R. Balice-Gordon,et al.  Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector , 1999, Nature Medicine.

[56]  T. Partridge,et al.  Dynamics of Myoblast Transplantation Reveal a Discrete Minority of Precursors with Stem Cell–like Properties as the Myogenic Source , 1999, The Journal of cell biology.

[57]  Erwin Hauser,et al.  Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice , 1999, Anatomy and Embryology.

[58]  J. Changeux,et al.  Induction of utrophin gene expression by heregulin in skeletal muscle cells: role of the N-box motif and GA binding protein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  L. Lescaudron,et al.  Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant , 1999, Neuromuscular Disorders.

[60]  K. Campbell,et al.  Dystrophic phenotype induced in vitro by antibody blockade of muscle alpha-dystroglycan-laminin interaction. , 1999, Journal of cell science.

[61]  G. Pari,et al.  Molecular therapy for genetic muscle diseases--status 1999. , 1999, Clinical genetics.

[62]  F. Tomé The Peter Emil Becker Award lecture 1998. The saga of congenital muscular dystrophy. , 1999, Neuropediatrics.

[63]  K. Bushby,et al.  The limb-girdle muscular dystrophies-multiple genes, multiple mechanisms. , 1999, Human molecular genetics.

[64]  D. Dressman,et al.  rAAV vector-mediated sarcogylcan gene transfer in a hamster model for limb girdle muscular dystrophy , 1999, Gene Therapy.

[65]  Nicolas Deconinck,et al.  Expression of full-length utrophin prevents muscular dystrophy in mdx mice , 1998, Nature Medicine.

[66]  D. Taverna,et al.  Dystrophic Muscle in Mice Chimeric for Expression of α5 Integrin , 1998, The Journal of cell biology.

[67]  C. Leveille,et al.  Molecular Pathogenesis of Muscle Degeneration in the δ-Sarcoglycan-Deficient Hamster , 1998 .

[68]  E. Hoffman,et al.  Is myoblast transplantation effective? , 1998, Nature Medicine.

[69]  K. Campbell,et al.  The sarcoglycan complex in limb-girdle muscular dystrophy. , 1998, Current opinion in neurology.

[70]  John A. Faulkner,et al.  Progressive Muscular Dystrophy in α-Sarcoglycan–deficient Mice , 1998, The Journal of cell biology.

[71]  F. Merly,et al.  Normal myoblast implantation in MDX mice prevents muscle damage by exercise. , 1998, Biochemical and biophysical research communications.

[72]  R. Wollmann,et al.  γ-Sarcoglycan Deficiency Leads to Muscle Membrane Defects and Apoptosis Independent of Dystrophin , 1998, The Journal of cell biology.

[73]  Johnny Huard,et al.  Development of Approaches to Improve Cell Survival in Myoblast Transfer Therapy , 1998, The Journal of cell biology.

[74]  E. Engvall,et al.  Merosin-deficient congenital muscular dystrophy. Partial genetic correction in two mouse models. , 1998, The Journal of clinical investigation.

[75]  K. Campbell,et al.  Caveolin‐3 is not an integral component of the dystrophin glycoprotein complex , 1998, FEBS letters.

[76]  James M. Wilson,et al.  Transduction of Dendritic Cells by DNA Viral Vectors Directs the Immune Response to Transgene Products in Muscle Fibers , 1998, Journal of Virology.

[77]  E. Hoffman,et al.  Muscle maturation: implications for gene therapy. , 1998, Molecular medicine today.

[78]  J. Glorioso,et al.  Implications of maturation for viral gene delivery to skeletal muscle , 1998, Neuromuscular Disorders.

[79]  K. Okumura,et al.  Dystrophin acts as a transplantation rejection antigen in dystrophin-deficient mice: implication for gene therapy. , 1998, Journal of immunology.

[80]  K. Davies,et al.  Skeletal muscle-specific expression of a utrophin transgene rescues utrophin-dystrophin deficient mice , 1998, Nature Genetics.

[81]  K. Campbell,et al.  Functional rescue of the sarcoglycan complex in the BIO 14.6 hamster using delta-sarcoglycan gene transfer. , 1998, Molecular cell.

[82]  E. Hoffman,et al.  Mutations in the integrin α7 gene cause congenital myopathy , 1998, Nature Genetics.

[83]  S. Noguchi,et al.  From dystrophinopathy to sarcoglycanopathy: Evolution of a concept of muscular dystrophy , 1998, Muscle & nerve.

[84]  H. Ertl,et al.  Cytotoxic T-Lymphocyte Target Proteins and Their Major Histocompatibility Complex Class I Restriction in Response to Adenovirus Vectors Delivered to Mouse Liver , 1998, Journal of Virology.

[85]  G. Dickson,et al.  Effective restoration of dystrophin‐associated proteins in vivo by adenovirus‐mediated transfer of truncated dystrophin cDNAs , 1998, FEBS letters.

[86]  G Cossu,et al.  Muscle regeneration by bone marrow-derived myogenic progenitors. , 1998, Science.

[87]  Hanns Lochmüller,et al.  Adenovirus-mediated dystrophin minigene transfer improves muscle strength in adult dystrophic (MDX) mice , 1998, Gene Therapy.

[88]  I. Nonaka Animal models of muscular dystrophies. , 1998, Laboratory animal science.

[89]  A. Beaudet,et al.  Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity , 1998, Nature Genetics.

[90]  J. Wolff,et al.  The efficient expression of intravascularly delivered DNA in rat muscle , 1998, Gene Therapy.

[91]  K. Davies,et al.  Efficient utrophin expression following adenovirus gene transfer in dystrophic muscle. , 1998, Biochemical and biophysical research communications.

[92]  P. Jongen,et al.  The heart in limb girdle muscular dystrophy , 1998, Heart.

[93]  G. Dickson,et al.  Mini- and full-length dystrophin gene transfer induces the recovery of nitric oxide synthase at the sarcolemma of mdx4cv skeletal muscle fibers , 1998, Gene Therapy.

[94]  K. Campbell,et al.  Sarcospan, the 25-kDa Transmembrane Component of the Dystrophin-Glycoprotein Complex* , 1997, The Journal of Biological Chemistry.

[95]  K. Davies,et al.  Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice , 1997, Nature Medicine.

[96]  J. Clancy,et al.  Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line , 1997, Nature Medicine.

[97]  R. Fässler,et al.  Absence of integrin α7 causes a novel form of muscular dystrophy , 1997, Nature Genetics.

[98]  K. Campbell,et al.  Animal Models for Muscular Dystrophy Show Different Patterns of Sarcolemmal Disruption , 1997, The Journal of cell biology.

[99]  I. Nonaka,et al.  Laminin α2 chain‐null mutant mice by targeted disruption of the Lama2 gene: a new model of merosin (laminin 2)‐deficient congenital muscular dystrophy , 1997 .

[100]  C. Huard,et al.  Prevention by anti-LFA-1 of acute myoblast death following transplantation. , 1997, Journal of immunology.

[101]  L. Kunkel,et al.  The fate of individual myoblasts after transplantation into muscles of DMD patients , 1997, Nature Medicine.

[102]  Susan C. Brown,et al.  Utrophin-Dystrophin-Deficient Mice as a Model for Duchenne Muscular Dystrophy , 1997, Cell.

[103]  J. Sanes,et al.  Skeletal and Cardiac Myopathies in Mice Lacking Utrophin and Dystrophin: A Model for Duchenne Muscular Dystrophy , 1997, Cell.

[104]  K. Daniels,et al.  Dystroglycan is essential for early embryonic development: disruption of Reichert's membrane in Dag1-null mice. , 1997, Human molecular genetics.

[105]  K. Campbell,et al.  Muscular dystrophies and the dystrophin-glycoprotein complex. , 1997, Current opinion in neurology.

[106]  Y. Hayashizaki,et al.  Identification of the Syrian hamster cardiomyopathy gene. , 1997, Human molecular genetics.

[107]  James M. Wilson,et al.  Recombinant adeno-associated virus for muscle directed gene therapy , 1997, Nature Medicine.

[108]  K. Davies,et al.  Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene , 1996, Nature.

[109]  K. Campbell,et al.  Dystroglycan: an extracellular matrix receptor linked to the cytoskeleton. , 1996, Current opinion in cell biology.

[110]  M. Passos-Bueno,et al.  Autosomal recessive limbgirdle muscular dystrophy, LGMD2F, is caused by a mutation in the δ–sarcoglycan gene , 1996, Nature Genetics.

[111]  D. Bedwell,et al.  Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations , 1996, Nature Medicine.

[112]  E. Engvall,et al.  Partial laminin alpha2 chain restoration in alpha2 chain-deficient dy/dy mouse by primary muscle cell culture transplantation , 1996, The Journal of cell biology.

[113]  J. Beckmann,et al.  β-sarcoglycan : Characterization and role in limb-girdle muscular dystrophy linked to 4q12 , 1996, Neuromuscular Disorders.

[114]  D. Blake,et al.  Utrophin: A Structural and Functional Comparison to Dystrophin , 1996, Brain pathology.

[115]  L. Kunkel,et al.  Erratum: β-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex (Nature Genetics (1995) 11 266-273)) , 1996 .

[116]  A. Coffey Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice , 1996 .

[117]  L. Kunkel,et al.  Mutations in the Dystrophin-Associated Protein γ-Sarcoglycan in Chromosome 13 Muscular Dystrophy , 1995, Science.

[118]  L. Kunkel,et al.  β–sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex , 1995, Nature Genetics.

[119]  K. Aldape,et al.  Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy , 1995, Cell.

[120]  K. Davies,et al.  Calmodulin regulation of utrophin actin binding. , 1995, Biochemical Society transactions.

[121]  K. Campbell,et al.  Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. , 1995, Human molecular genetics.

[122]  A. Utani,et al.  Identification of a novel mutant transcript of laminin alpha 2 chain gene responsible for muscular dystrophy and dysmyelination in dy2J mice. , 1995, Human molecular genetics.

[123]  J. Beckmann,et al.  Primary adhalinopathy: a common cause of autosomal recessive muscular dystrophy of variable severity , 1995, Nature Genetics.

[124]  K. Campbell Three muscular dystrophies: Loss of cytoskeleton-extracellular matrix linkage , 1995, Cell.

[125]  E. Engvall,et al.  Murine muscular dystrophy caused by a mutation in the laminin α2 (Lama2) gene , 1994, Nature Genetics.

[126]  J. Beckmann,et al.  Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy , 1994, Cell.

[127]  E. Engvall,et al.  Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[128]  H. Yamamoto,et al.  Dissociation of the complex of dystrophin and its associated proteins into several unique groups by n-octyl beta-D-glucoside. , 1994, European journal of biochemistry.

[129]  R. Hynes,et al.  Embryonic mesodermal defects in alpha 5 integrin-deficient mice. , 1993, Development.

[130]  J. Ervasti,et al.  A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin , 1993, The Journal of cell biology.

[131]  V. Chapman,et al.  New mdx mutation disrupts expression of muscle and nonmuscle isoforms of dystrophin , 1993, Nature Genetics.

[132]  T. Tsukahara,et al.  Laminin in Animal Models for Muscular Dystrophy Defect of Laminin M in Skeletal and Cardiac Muscles and Peripheral Nerve of the Homozygous Dystrophic dy/dy Mice. , 1993 .

[133]  K. Davies,et al.  Primary structure of dystrophin-related protein , 1992, Nature.

[134]  O. Ibraghimov-Beskrovnaya,et al.  Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix , 1992, Nature.

[135]  J. Kornegay,et al.  Canine X-linked muscular dystrophy as an animal model of Duchenne muscular dystrophy: a review. , 1992, American journal of medical genetics.

[136]  T. Furlong Myoblast transplantation. , 1992, Science.

[137]  J. Ervasti,et al.  Membrane organization of the dystrophin-glycoprotein complex , 1991, Cell.

[138]  E. Ozawa,et al.  Glycoprotein complex anchoring dystrophin to sarcolemma. , 1990, Journal of biochemistry.

[139]  G. Acsadi,et al.  Direct gene transfer into mouse muscle in vivo. , 1990, Science.

[140]  E A Barnard,et al.  The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. , 1989, Science.

[141]  K. Campbell,et al.  Association of dystrophin and an integral membrane glycoprotein , 1989, Nature.

[142]  V. Chapman,et al.  Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[143]  Eric P. Hoffman,et al.  The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs , 1988, Nature.

[144]  Eric P. Hoffman,et al.  Dystrophin: The protein product of the duchenne muscular dystrophy locus , 1987, Cell.

[145]  M. Koenig,et al.  Complete cloning of the duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals , 1987, Cell.

[146]  G. Kaloyanides,et al.  Aminoglycoside nephrotoxicity. , 1980, Kidney international.

[147]  E. Russell,et al.  Dystrophia Muscularis: A HEREDITARY PRIMARY MYOPATHY IN THE HOUSE MOUSE. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[148]  R. Hynes,et al.  Embryonic mesodermal defects in 5 integrin-deficient mice , 1996 .