Improvement of soft-magnetic properties for Fe-based amorphous alloys with high saturation polarization by stress annealing

Stress annealing is utilized for enhancing the magnetic softness of Fe83–x CoxB10Si3C3P1 (x = 0–16) amorphous alloys with saturation polarization up to 1.75 T. All of the stress-annealed alloys exhibit improved soft-magnetic properties, including low coercivity of 1.8–2.2 A/m, low core loss of 0.09–0.11 W/kg at 1.0 T and 50 Hz, and high permeability of 27,000–33,200 at 5 A/m and 1 kHz. Stress annealing induces longitudinal magnetic anisotropy and facilitates the annihilation of free volume, leading to pinning-free domain wall motion, and thus the enhanced magnetic softness. The induced magnetic anisotropy relates to the constrained elastic elongation introduced by stress annealing. GRAPHICAL ABSTRACT IMPACT STATEMENT The stress-annealed Fe83–x Co x B10Si3C3P1 (x = 0–16) amorphous alloys exhibit excellent magnetic softness, sheding light on the designing and processing of amorphous soft magnetic alloys with high saturation polarization.

[1]  D. Raabe,et al.  A mechanically strong and ductile soft magnet with extremely low coercivity , 2022, Nature.

[2]  B. Shen,et al.  Excellent magnetic softness-magnetization synergy and suppressed defect activation in soft magnetic amorphous alloys by magnetic field annealing , 2022, Journal of Materials Science & Technology.

[3]  W. Maziarz,et al.  Structure and Magnetic Properties of Thermodynamically Predicted Rapidly Quenched Fe85-xCuxB15 Alloys , 2021, Materials.

[4]  C. Liu,et al.  Nano-heterogeneity-stabilized and magnetic-interaction-modulated metallic glasses , 2021, Science China Materials.

[5]  W. Maziarz,et al.  Influence of Cu Content on Structure, Thermal Stability and Magnetic Properties in Fe72−xNi8Nb4CuxSi2B14 Alloys , 2021, Materials.

[6]  W. Maziarz,et al.  The Structure and Magnetic Properties of Rapidly Quenched Fe72Ni8Nb4Si2B14 Alloy , 2020, Materials.

[7]  Tian-cheng Liu,et al.  Direct current tolerant characteristics of FeCuNbSiB nanocrystalline in tensile stress annealing , 2020, Journal of Materials Science: Materials in Electronics.

[8]  K. Yin,et al.  Enhancement of plasticity for FeCoBSiNb bulk metallic glass with superhigh strength through cryogenic thermal cycling , 2020 .

[9]  G. Herzer,et al.  Temperature memory effect of stress annealing-induced anisotropy in metallic glasses , 2020 .

[10]  N. Ito,et al.  Recent progress in Fe-based amorphous and nanocrystalline soft magnetic materials , 2020 .

[11]  A. Kolano-Burian,et al.  Influence of Cu Content on Structure and Magnetic Properties in Fe86-xCuxB14 Alloys , 2020, Materials.

[12]  K. Yao,et al.  Composition design for Fe-based soft magnetic amorphous and nanocrystalline alloys with high Fe content , 2020 .

[13]  V. Zhukova,et al.  Engineering of Magnetic Softness and Domain Wall Dynamics of Fe-rich Amorphous Microwires by Stress- induced Magnetic Anisotropy , 2019, Scientific Reports.

[14]  B. Shen,et al.  Microstructure and soft-magnetic properties of FeCoPCCu nanocrystalline alloys , 2019, Journal of Materials Science & Technology.

[15]  C. Liu,et al.  Relating structural heterogeneity to β relaxation processes in metallic glasses , 2019, Materials Research Letters.

[16]  T. Monson,et al.  Soft magnetic materials for a sustainable and electrified world , 2018, Science.

[17]  Shao-xiong Zhou,et al.  Highly Ductile and Ultra-Thick P-Doped FeSiB Amorphous Alloys with Excellent Soft Magnetic Properties , 2018, Materials.

[18]  N. Nomura,et al.  Effects of nanocrystallisation on saturation magnetisation of amorphous Fe76Si9B10P5 , 2018 .

[19]  Lei Xie,et al.  Fe(Co)SiBPCCu nanocrystalline alloys with high B s above 1.83 T , 2017 .

[20]  Yecheng Li,et al.  Effect of surface crystallization on magnetic properties of Fe82Cu1Si4B11.5Nb1.5 nanocrystalline alloy ribbons , 2017 .

[21]  A. Makino,et al.  Industrialization of nanocrystalline Fe–Si–B–P–Cu alloys for high magnetic flux density cores , 2016 .

[22]  M. Marsilius,et al.  Surface crystallization and magnetic properties of Fe84.3Cu0.7Si4B8P3 soft magnetic ribbons , 2015 .

[23]  B. Shen,et al.  Crystallization behavior and magnetic properties in High Fe content FeBCSiCu alloy system , 2015 .

[24]  M. Nishijima,et al.  Magnetic properties of 120-mm wide ribbons of high Bs and low core-loss NANOMET® alloy , 2015 .

[25]  X. M. Zhang,et al.  Competition driven nanocrystallization in high Bs and low coreloss Fe–Si–B–P–Cu soft magnetic alloys , 2015 .

[26]  A. Ma,et al.  Soft magnetic properties in Fe84−xB10C6Cux nanocrystalline alloys , 2013 .

[27]  K. Kurzydłowski,et al.  Relaxation studies of amorphous alloys with creep induced magnetic and structural anisotropy , 2012 .

[28]  Kiyonori Suzuki,et al.  Magnetic-field-induced anisotropies and exchange softening in Fe-rich nanocrystalline soft magnetic alloys , 2012 .

[29]  J. Blandin,et al.  Fractal growth of the dense-packing phase in annealed metallic glass imaged by high-resolution atomic force microscopy , 2012 .

[30]  B. Shen,et al.  Development of quaternary Fe-based bulk metallic glasses with high saturation magnetization above 1.6 T , 2012 .

[31]  Masato Ohnuma,et al.  Structural anisotropy of amorphous alloys with creep-induced magnetic anisotropy , 2012 .

[32]  Christina H. Chen,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.

[33]  J. Kováč,et al.  Improvement of soft magnetic properties in Fe38Co38Mo8B15Cu amorphous and nanocrystalline alloys by heat treatment in external magnetic field , 2010 .

[34]  Akihiro Makino,et al.  FeSiBPCu Nanocrystalline Soft Magnetic Alloys with High Bs of 1.9 Tesla Produced by Crystallizing Hetero-Amorphous Phase , 2009 .

[35]  M. Ohta,et al.  Magnetic properties of nanocrystalline Fe82.65Cu1.35SixB16- x alloys (x=0-7) , 2007 .

[36]  Gary J. Shiflet,et al.  Mechanical properties of iron-based bulk metallic glasses , 2007 .

[37]  Ryusuke Hasegawa,et al.  Magnetic properties of high B s Fe-based amorphous material , 2006 .

[38]  A. Makino,et al.  Origin of Low Coercivity of Fe-(Al, Ga)-(P, C, B, Si, Ge) Bulk Glassy Alloys , 2003 .

[39]  T. Chin,et al.  Novel tin-containing Fe-base glassy alloys , 2003 .

[40]  R. Hasegawa,et al.  Present status of amorphous soft magnetic alloys , 2000 .

[41]  A. Makino,et al.  LOW CORE LOSSES AND SOFT MAGNETIC PROPERTIES OF FE-AL-GA-P-C-B-SI GLASSY ALLOY RIBBONS WITH LARGE THICKNESSES , 1999 .

[42]  M. McHenry,et al.  Distributed exchange interactions and temperature dependent magnetization in amorphous Fe88−xCoxZr7B4Cu1 alloys , 1999 .

[43]  Akihiro Makino,et al.  Nanocrystalline soft magnetic Fe-M-B (M = Zr, Hf, Nb) alloys and their applications , 1997 .

[44]  Yan,et al.  Direct observation of anelastic bond-orientational anisotropy in amorphous Tb26Fe62Co12 thin films by x-ray diffraction. , 1991, Physical review. B, Condensed matter.

[45]  V. L. Moruzzi,et al.  Generalized Slater-Pauling curve for transition-metal magnets , 1983 .

[46]  T. Masumoto,et al.  Soft Ferromagnetic Properties of Some Amorphous Alloys , 1976 .