Combinatorial structure and randomized subexponential algorithms for infinite games

The complexity of solving infinite games, including parity, mean payoff, and simple stochastic, is an important open problem in verification, automata, and complexity theory. In this paper, we develop an abstract setting for studying and solving such games, based on function optimization over certain discrete structures. We introduce new classes of recursively local-global (RLG) and partial recursively local-global (PRLG) functions, and show that strategy evaluation functions for simple stochastic, mean payoff, and parity games belong to these classes.In this setting, we suggest randomized subexponential algorithms appropriate for RLG-and PRLG-function optimization. We show that the subexponential algorithms for combinatorial linear programming, due to Kalai and Matousek, Sharir, Welzl, can be adapted for optimizing the RLG-and PRLG-functions.

[1]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[2]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[3]  Craig A. Tovey,et al.  3. Local improvement on discrete structures , 2003 .

[4]  Anne Condon,et al.  On Algorithms for Simple Stochastic Games , 1990, Advances In Computational Complexity Theory.

[5]  Craig A. Tovey,et al.  Low order polynomial bounds on the expected performance of local improvement algorithms , 1986, Math. Program..

[6]  Uri Zwick,et al.  The Complexity of Mean Payoff Games on Graphs , 1996, Theor. Comput. Sci..

[7]  Christos H. Papadimitriou,et al.  Algorithms, Games, and the Internet , 2001, ICALP.

[8]  Henrik Björklund,et al.  Optimization on Completely Unimodal Hypercubes , 2002 .

[9]  Henrik Björklund,et al.  On Combinatorial Structure and Algorithms for Parity Games , 2003 .

[10]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[11]  E. Allen Emerson,et al.  Model Checking and the Mu-calculus , 1996, Descriptive Complexity and Finite Models.

[12]  Nicolai N. Pisaruk,et al.  Mean Cost Cyclical Games , 1999, Math. Oper. Res..

[13]  A. Puri Theory of hybrid systems and discrete event systems , 1996 .

[14]  Walter Ludwig,et al.  A Subexponential Randomized Algorithm for the Simple Stochastic Game Problem , 1995, Inf. Comput..

[15]  J. Filar,et al.  Competitive Markov Decision Processes , 1996 .

[16]  L. Shapley,et al.  Stochastic Games* , 1953, Proceedings of the National Academy of Sciences.

[17]  Henrik Björklund,et al.  Controlled Linear Programming for Infinite Games , 2004 .

[18]  Peter L. Hammer,et al.  From Linear Separability to Unimodality: A Hierarchy of Pseudo-Boolean Functions , 1988, SIAM J. Discret. Math..

[19]  Micha Sharir,et al.  A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.

[20]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[21]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[22]  Thomas Wilke,et al.  Automata logics, and infinite games: a guide to current research , 2002 .

[23]  R. Bellman,et al.  Dynamic Programming and Markov Processes , 1960 .

[24]  Pierre Hansen,et al.  State-of-the-Art Survey - Constrained Nonlinear 0-1 Programming , 1993, INFORMS J. Comput..

[25]  Henrik Björklund,et al.  A Discrete Subexponential Algorithm for Parity Games , 2003, STACS.

[26]  O. Svensson,et al.  A Subexponential Algorithm for a Subclass of P-Matrix Generalized Linear Complementarity Problems , 2005 .

[27]  Marcin Jurdzinski,et al.  Small Progress Measures for Solving Parity Games , 2000, STACS.

[28]  Marcin Jurdzinski,et al.  A Discrete Strategy Improvement Algorithm for Solving Parity Games , 2000, CAV.

[29]  O. Svensson,et al.  Linear Complementarity Algorithms for Mean Payoff Games , 2005 .

[30]  Anne Condon,et al.  The Complexity of Stochastic Games , 1992, Inf. Comput..

[31]  Stephan Merz,et al.  Model Checking , 2000 .

[32]  Cyrus Derman,et al.  Finite State Markovian Decision Processes , 1970 .

[33]  A. Karzanov,et al.  Cyclic games and an algorithm to find minimax cycle means in directed graphs , 1990 .

[34]  Kathy Williamson Hoke,et al.  Completely unimodal numberings of a simple polytope , 1988, Discret. Appl. Math..

[35]  Pierre Hansen,et al.  Constrained Nonlinear 0-1 Programming , 1989 .

[36]  Henrik Björklund,et al.  Memoryless determinacy of parity and mean payoff games: a simple proof , 2004, Theor. Comput. Sci..

[37]  Henrik Björklund,et al.  A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games , 2007, Discret. Appl. Math..

[38]  Henrik Björklund,et al.  Complexity of Model Checking by Iterative Improvement: The Pseudo-Boolean Framework , 2003, Ershov Memorial Conference.

[39]  Gil Kalai,et al.  A subexponential randomized simplex algorithm (extended abstract) , 1992, STOC '92.

[40]  R. Karp,et al.  On Nonterminating Stochastic Games , 1966 .

[41]  A. Ehrenfeucht,et al.  Positional strategies for mean payoff games , 1979 .

[42]  Gil Kalai,et al.  Linear programming, the simplex algorithm and simple polytopes , 1997, Math. Program..