Analysis of multi-objective Kriging-based methods for constrained global optimization
暂无分享,去创建一个
[1] James M. Parr,et al. Infill sampling criteria for surrogate-based optimization with constraint handling , 2012 .
[2] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[3] C. D. Perttunen,et al. Lipschitzian optimization without the Lipschitz constant , 1993 .
[4] Charles Audet,et al. A MADS Algorithm with a Progressive Barrier for Derivative-Free Nonlinear Programming , 2007 .
[5] David W. Corne,et al. Multiple objective optimisation applied to route planning , 2011, GECCO '11.
[6] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .
[7] Sven Leyffer,et al. Nonlinear programming without a penalty function , 2002, Math. Program..
[8] Charles Audet,et al. A mesh adaptive direct search algorithm for multiobjective optimization , 2009, Eur. J. Oper. Res..
[9] Thomas J. Santner,et al. The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.
[10] Michael James Sasena,et al. Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. , 2002 .
[11] Charles Audet,et al. A Pattern Search Filter Method for Nonlinear Programming without Derivatives , 2001, SIAM J. Optim..
[12] Nikolaus Hansen,et al. The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.
[13] Andy J. Keane,et al. Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .
[14] Emmanuel Vazquez,et al. Modélisation comportementale de systèmes non-linéaires multivariables par méthodes à noyaux et applications , 2005 .
[15] Victor Picheny,et al. A Stepwise uncertainty reduction approach to constrained global optimization , 2014, AISTATS.
[16] Sébastien Le Digabel,et al. Algorithm xxx : NOMAD : Nonlinear Optimization with the MADS algorithm , 2010 .
[17] Harold J. Kushner,et al. A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .
[18] D. Krige. A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .
[19] Donald R. Jones,et al. A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..
[20] Charles Audet,et al. A surrogate-model-based method for constrained optimization , 2000 .
[21] Charles Audet,et al. Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..
[22] E. Vázquez,et al. Convergence properties of the expected improvement algorithm with fixed mean and covariance functions , 2007, 0712.3744.
[23] A. Basudhar,et al. Constrained efficient global optimization with support vector machines , 2012, Structural and Multidisciplinary Optimization.
[24] Panos Y. Papalambros,et al. The Use of Surrogate Modeling Algorithms to Exploit Disparities in Function Computation Time within , 2001 .
[25] Andy J. Keane,et al. Enhancing infill sampling criteria for surrogate-based constrained optimization , 2012, J. Comput. Methods Sci. Eng..
[26] Nikolaus Hansen,et al. Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.
[27] Jack P. C. Kleijnen,et al. Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..