Analysis of multi-objective Kriging-based methods for constrained global optimization

Metamodeling, i.e., building surrogate models to expensive black-box functions, is an interesting way to reduce the computational burden for optimization purpose. Kriging is a popular metamodel based on Gaussian process theory, whose statistical properties have been exploited to build efficient global optimization algorithms. Single and multi-objective extensions have been proposed to deal with constrained optimization when the constraints are also evaluated numerically. This paper first compares these methods on a representative analytical benchmark. A new multi-objective approach is then proposed to also take into account the prediction accuracy of the constraints. A numerical evaluation is provided on the same analytical benchmark and a realistic aerospace case study.

[1]  James M. Parr,et al.  Infill sampling criteria for surrogate-based optimization with constraint handling , 2012 .

[2]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[3]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[4]  Charles Audet,et al.  A MADS Algorithm with a Progressive Barrier for Derivative-Free Nonlinear Programming , 2007 .

[5]  David W. Corne,et al.  Multiple objective optimisation applied to route planning , 2011, GECCO '11.

[6]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[7]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[8]  Charles Audet,et al.  A mesh adaptive direct search algorithm for multiobjective optimization , 2009, Eur. J. Oper. Res..

[9]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[10]  Michael James Sasena,et al.  Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. , 2002 .

[11]  Charles Audet,et al.  A Pattern Search Filter Method for Nonlinear Programming without Derivatives , 2001, SIAM J. Optim..

[12]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[13]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[14]  Emmanuel Vazquez,et al.  Modélisation comportementale de systèmes non-linéaires multivariables par méthodes à noyaux et applications , 2005 .

[15]  Victor Picheny,et al.  A Stepwise uncertainty reduction approach to constrained global optimization , 2014, AISTATS.

[16]  Sébastien Le Digabel,et al.  Algorithm xxx : NOMAD : Nonlinear Optimization with the MADS algorithm , 2010 .

[17]  Harold J. Kushner,et al.  A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .

[18]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[19]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[20]  Charles Audet,et al.  A surrogate-model-based method for constrained optimization , 2000 .

[21]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[22]  E. Vázquez,et al.  Convergence properties of the expected improvement algorithm with fixed mean and covariance functions , 2007, 0712.3744.

[23]  A. Basudhar,et al.  Constrained efficient global optimization with support vector machines , 2012, Structural and Multidisciplinary Optimization.

[24]  Panos Y. Papalambros,et al.  The Use of Surrogate Modeling Algorithms to Exploit Disparities in Function Computation Time within , 2001 .

[25]  Andy J. Keane,et al.  Enhancing infill sampling criteria for surrogate-based constrained optimization , 2012, J. Comput. Methods Sci. Eng..

[26]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[27]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..