Validity of the Kirchhoff approximation for electromagnetic wave scattering from fractal surfaces
暂无分享,去创建一个
[1] G. Leonard Tyler. Comparison of quasi-specular radar scatter from the moon with surface parameters obtained from images , 1979 .
[2] L.-J. Du. A more exact theory of bistatic scattering from statistically rough surfaces , 1967 .
[3] D. Jackson,et al. The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum , 1988 .
[4] Giorgio Franceschetti,et al. The validity of the Kirchhoff approximation for fractal surface scattering , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).
[5] Giovanni Picardi,et al. Mars surface models and subsurface detection performance in MARSIS , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).
[6] M. Shepard,et al. Lava flow surface roughness and depolarized radar scattering , 1996 .
[7] J A Ogilvy. An estimate of the accuracy of the Kirchhoff approximation in acoustic wave scattering from rough surfaces , 1986 .
[8] R. J. Papa,et al. Conditions for the validity of physical optics in rough surface scattering , 1988 .
[9] J. Kong,et al. Scattering of Electromagnetic Waves, Numerical Simulations , 2001 .
[10] Michael F. Barnsley,et al. Fractals everywhere , 1988 .
[11] Giorgio Franceschetti,et al. Scattering from dielectric random fractal surfaces via method of moments , 2000, IEEE Trans. Geosci. Remote. Sens..
[12] Leung Tsang,et al. Random Rough Surface Simulations , 2002 .
[13] T. Farr,et al. The roughness of natural terrain: A planetary and remote sensing perspective , 2001 .
[14] F. Berizzi,et al. Scattering coefficient evaluation from a two-dimensional sea fractal surface , 2002 .
[15] David E. Smith,et al. Laser Altimetry of Small-Scale Features on 433 Eros from NEAR-Shoemaker , 2001, Science.
[16] Giorgio Franceschetti,et al. Gaussian rough surfaces and Kirchhoff approximation , 1999 .
[17] Charles-Antoine Guérin,et al. Electromagnetic scattering on fractional Brownian surfaces and estimation of the Hurst exponent , 2001 .
[18] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[19] C. Sparrow. The Fractal Geometry of Nature , 1984 .
[20] Guo Li. Electromagnetic Scattering from 2D Band limited Fractal Surface Using Kirchhoff Approximation , 2000 .
[21] Adrian K. Fung,et al. Numerical simulation of scattering from simple and composite random surfaces , 1985 .
[22] J. C. Dainty,et al. Theory of Wave Scattering from Random Rough Surfaces , 1991 .
[23] Vladas Pipiras,et al. CONVERGENCE OF THE WEIERSTRASS-MANDELBROT PROCESS TO FRACTIONAL BROWNIAN MOTION , 2000 .
[24] Angioletta Coradini,et al. Self‐affine behavior of Martian topography at kilometer scale from Mars Orbiter Laser Altimeter data , 2003 .
[25] Bruce A. Campbell,et al. Radar Scattering from a Self-Affine Fractal Surface: Near-Nadir Regime , 1999 .
[26] G. Franceschetti,et al. Scattering from natural rough surfaces modeled by fractional Brownian motion two-dimensional processes , 1999 .
[27] J. Kong,et al. Scattering of Electromagnetic Waves: Theories and Applications , 2000 .
[28] G. Leonard Tyler,et al. Wavelength dependence in radio-wave scattering and specular-point theory , 1976 .
[29] Bruce A. Campbell,et al. Near-Nadir Radar Scattering from Venus , 2001 .
[30] Giorgio Franceschetti,et al. Fractal surfaces and electromagnetic extended boundary conditions , 2002, IEEE Trans. Geosci. Remote. Sens..
[31] M. Shepard,et al. Self‐affine (fractal) topography: Surface parameterization and radar scattering , 1995 .
[32] E. Thorsos. The Validity of the Kirchhoff Approximation for Rough Surface Scattering Using a Gaussian Roughness Spectrum , 2004 .