A domain decomposition method of stochastic PDEs: An iterative solution techniques using a two-level scalable preconditioner

Recent advances in high performance computing systems and sensing technologies motivate computational simulations with extremely high resolution models with capabilities to quantify uncertainties for credible numerical predictions. A two-level domain decomposition method is reported in this investigation to devise a linear solver for the large-scale system in the Galerkin spectral stochastic finite element method (SSFEM). In particular, a two-level scalable preconditioner is introduced in order to iteratively solve the large-scale linear system in the intrusive SSFEM using an iterative substructuring based domain decomposition solver. The implementation of the algorithm involves solving a local problem on each subdomain that constructs the local part of the preconditioner and a coarse problem that propagates information globally among the subdomains. The numerical and parallel scalabilities of the two-level preconditioner are contrasted with the previously developed one-level preconditioner for two-dimensional flow through porous media and elasticity problems with spatially varying non-Gaussian material properties. A distributed implementation of the parallel algorithm is carried out using MPI and PETSc parallel libraries. The scalabilities of the algorithm are investigated in a Linux cluster.

[1]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[2]  Einar M. Rønquist,et al.  Spectral and high order methods for partial differential equations : selected papers from the ICOSAHOM '09 conference, June 22-26, Trondheim, Norway , 2010 .

[3]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[4]  Waad Subber,et al.  Dual-primal domain decomposition method for uncertainty quantification , 2013 .

[5]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[6]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[7]  Tarek P. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations , 2008, Lecture Notes in Computational Science and Engineering.

[8]  Stefan Vandewalle,et al.  Algebraic multigrid for stationary and time‐dependent partial differential equations with stochastic coefficients , 2008, Numer. Linear Algebra Appl..

[9]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[10]  Waad Subber,et al.  Primal and dual-primal iterative substructuring methods of stochastic PDEs , 2010 .

[11]  Hermann G. Matthies,et al.  Parallel Computation of Stochastic Groundwater Flow , 2003 .

[12]  A. Sarkar,et al.  Domain decomposition of stochastic PDEs: Theoretical formulations , 2009 .

[13]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[14]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[15]  R. Ghanem The Nonlinear Gaussian Spectrum of Log-Normal Stochastic Processes and Variables , 1999 .

[16]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[17]  Habib N. Najm,et al.  A multigrid solver for two-dimensional stochastic diffusion equations , 2003 .

[18]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .

[19]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[20]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[21]  Howard C. Elman,et al.  Block-diagonal preconditioning for spectral stochastic finite-element systems , 2008 .

[22]  T. Hou,et al.  Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification , 2008 .

[23]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[24]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[25]  Roger G. Ghanem,et al.  On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..

[26]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[27]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[28]  Cristian Marchioli,et al.  CISM–International Centre for Mechanical Sciences , 2004 .

[29]  Howard C. Elman,et al.  Solving the Stochastic Steady-State Diffusion Problem using , 2006 .

[30]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[31]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[32]  Lori Graham-Brady,et al.  Efficient numerical strategies for spectral stochastic finite element models , 2005 .

[33]  Jan Mandel,et al.  On the Equivalence of Primal and Dual Substructuring Preconditioners , 2008, 0802.4328.

[34]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[35]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[36]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[37]  A. Nouy Recent Developments in Spectral Stochastic Methods for the Numerical Solution of Stochastic Partial Differential Equations , 2009 .

[38]  O. L. Maître,et al.  Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .

[39]  O. Widlund Domain Decomposition Algorithms , 1993 .

[40]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[41]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[42]  Waad Subber,et al.  Domain decomposition method of stochastic PDEs: a two-level scalable preconditioner , 2012 .

[43]  Geert Lombaert,et al.  Application of the stochastic finite element method for Gaussian and non-Gaussian systems , 2004 .

[44]  R. Ghanem,et al.  Iterative solution of systems of linear equations arising in the context of stochastic finite elements , 2000 .

[45]  M. Eldred,et al.  Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .

[46]  Charbel Farhat,et al.  A FETI‐preconditioned conjugate gradient method for large‐scale stochastic finite element problems , 2009 .

[47]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[48]  Stephen Roberts,et al.  Stochastic galerkin and collocation methods for quantifying uncertainty in differential equations: a review , 2009 .

[49]  C. Farhat,et al.  A scalable dual-primal domain decomposition method , 2000, Numer. Linear Algebra Appl..

[50]  Andreas Keese,et al.  Review of Recent Developments in the Numerical Solution of Stochastic Partial Differential Equations (Stochastic Finite Elements)A , 2003 .

[51]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[52]  Waad Subber,et al.  Domain Decomposition Methods of Stochastic PDEs , 2013, Domain Decomposition Methods in Science and Engineering XX.

[53]  Waad Subber,et al.  Domain Decomposition of Stochastic PDEs: A Novel Preconditioner and Its Parallel Performance , 2009, HPCS.

[54]  J. Mandel,et al.  An algebraic theory for primal and dual substructuring methods by constraints , 2005 .

[55]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[56]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[57]  Ivo Babuška,et al.  On solving elliptic stochastic partial differential equations , 2002 .

[58]  Howard C. Elman,et al.  ASSESSMENT OF COLLOCATION AND GALERKIN APPROACHES TO LINEAR DIFFUSION EQUATIONS WITH RANDOM DATA , 2011 .

[59]  Stefan Vandewalle,et al.  Iterative Solvers for the Stochastic Finite Element Method , 2008, SIAM J. Sci. Comput..

[60]  Elisabeth Ullmann,et al.  A Kronecker Product Preconditioner for Stochastic Galerkin Finite Element Discretizations , 2010, SIAM J. Sci. Comput..

[61]  R. Tempone,et al.  Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison , 2011 .

[62]  Roger Ghanem,et al.  Efficient solution of stochastic systems: Application to the embankment dam problem , 2007 .