A semilinear Black and Scholes partial differential equation for valuing American options: approximate solutions and convergence
暂无分享,去创建一个
[1] G. Barles,et al. Comparison principle for dirichlet-type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations , 1990 .
[2] D. Lamberton,et al. Variational inequalities and the pricing of American options , 1990 .
[3] Frank Spitzer. Optimal Stopping Rules (A. N. Shiryayev) , 1981 .
[4] H. Ishii. Hamilton-Jacobi Equations with Discontinuous Hamiltonians on Arbitrary Open Sets , 1985 .
[5] G. Barles,et al. CONVERGENCE OF NUMERICAL SCHEMES FOR PARABOLIC EQUATIONS ARISING IN FINANCE THEORY , 1995 .
[6] Valery A. Kholodnyi,et al. A nonlinear partial differential equation for American options in the entire domain of the state variable , 1997 .
[7] Alain Bensoussan,et al. Impulse Control and Quasi-Variational Inequalities , 1984 .
[8] Alain Bensoussan,et al. Applications of Variational Inequalities in Stochastic Control , 1982 .
[9] R. Myneni. The Pricing of the American Option , 1992 .
[10] Kenneth H. Karlsen,et al. A semilinear Black and Scholes partial differential equation for valuing American options , 2003, Finance Stochastics.
[11] G. Barles,et al. Numerical Methods in Finance: Convergence of Numerical Schemes for Degenerate Parabolic Equations Arising in Finance Theory , 1997 .
[12] Dawn Hunter,et al. Penalty and front-fixing methods for the numerical solution of American option problems , 2002 .
[13] Peter A. Forsyth,et al. Penalty methods for American options with stochastic volatility , 1998 .
[14] Alʹbert Nikolaevich Shiri︠a︡ev,et al. Optimal stopping rules , 1977 .
[15] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.
[16] Peter A. Forsyth,et al. Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..
[17] Hitoshi Ishii,et al. A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations , 1989 .
[18] W. Fleming,et al. Controlled Markov processes and viscosity solutions , 1992 .
[19] Patrick Jaillet,et al. Inéquations variationnelles et théorie des options , 1988 .
[20] Kristin Reikvam. Viscosity solutions of optimal stopping problems , 1997 .
[21] G. Barles,et al. Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.
[22] Huy En Pham. Optimal Stopping of Controlled Jump Diiusion Processes: a Viscosity Solution Approach , 1998 .
[23] Eduardo S. Schwartz,et al. The Valuation of American Put Options , 1977 .
[24] M. Musiela,et al. Martingale Methods in Financial Modelling , 2002 .
[25] D. Duffie. Dynamic Asset Pricing Theory , 1992 .