Zero-field magnetic ground state of EuMg2Bi2
暂无分享,去创建一个
D. Johnston | D. Vaknin | Santanu Pakhira | B. Ueland | T. Heitmann | R. Mcqueeney | S. Riberolles | R. McQueeney | S. Pakhira
[1] Qc,et al. Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2 , 2020, Nature Communications.
[2] D. Johnston,et al. Magnetic, thermal, and electronic-transport properties of EuMg2Bi2 single crystals , 2020, 2004.03753.
[3] Lin Zhou,et al. Manipulating magnetism in the topological semimetal EuCd2As2 , 2020, Physical Review B.
[4] P. Oppeneer,et al. Observation of multiple Dirac states in a magnetic topological material EuMg2Bi2 , 2019, 1912.08645.
[5] P. Manuel,et al. Magnetic and electronic structure of Dirac semimetal candidate EuMnSb2 , 2019, Physical Review B.
[6] D. Johnston,et al. Helical antiferromagnetic ordering in EuNi1.95As2 single crystals , 2019, Physical Review B.
[7] L. Elcoro,et al. Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: a new tool of the Bilbao Crystallographic Server. , 2019, Acta crystallographica. Section A, Foundations and advances.
[8] N. Qureshi. Mag2Pol: a program for the analysis of spherical neutron polarimetry, flipping ratio and integrated intensity data , 2018, Journal of Applied Crystallography.
[9] Y. Shi,et al. Anisotropic transport and optical spectroscopy study on antiferromagentic triangular lattice EuCd_2As_2: an interplay between magnetism and charge transport properties , 2016, 1604.07114.
[10] Yang Zhang,et al. Anomalous Hall effect in Weyl semimetal half-Heusler compounds RPtBi (R = Gd and Nd) , 2016, Proceedings of the National Academy of Sciences.
[11] Q. Gibson,et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. , 2016, Nature materials.
[12] Osama M Mustafa. Magnetic , 2016, Medical Humanities.
[13] D. Johnston,et al. EuCo2P2: A Model Molecular-Field Helical Heisenberg Antiferromagnet , 2015, 1607.00247.
[14] Yevhen Kushnirenko,et al. Time-reversal symmetry breaking type-II Weyl state in YbMnBi2 , 2019, Nature Communications.
[15] Emre S. Tasci,et al. Symmetry-Based Computational Tools for Magnetic Crystallography , 2015 .
[16] D. Johnston. Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets , 2014, 1407.6353.
[17] D. Johnston. Magnetic susceptibility of collinear and noncollinear heisenberg antiferromagnets. , 2012, Physical review letters.
[18] David J. Singh,et al. Structure and properties of single crystalline CaMg2Bi2, EuMg2Bi2, and YbMg2Bi2. , 2011, Inorganic chemistry.
[19] Juan Rodríguez-Carvajal,et al. Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .
[20] C. Zheng,et al. Site preferences and bond length differences in CaAl2Si2-type Zintl compounds , 1986 .
[21] W. Koehler,et al. Magnetic form factor of Eu2+ in EuO , 1977 .
[22] S. Borisenko. Time-reversal symmetry breaking type II Weyl state in YbMnBi 2 , 2016 .
[23] Juan Rodriguez-Carvaj,et al. Recent advances in magnetic structure determination neutron powder diffraction , 1993 .