Zero-field magnetic ground state of EuMg2Bi2

Layered trigonal ${\mathrm{EuMg}}_{2}{\mathrm{Bi}}_{2}$ is reported to be a topological semimetal that hosts multiple Dirac points that may be gapped or split by the onset of magnetic order. Here, we report zero-field single-crystal neutron-diffraction and bulk magnetic susceptibility measurements versus temperature $\ensuremath{\chi}(T)$ of ${\mathrm{EuMg}}_{2}{\mathrm{Bi}}_{2}$ that show the intraplane ordering is ferromagnetic (${\mathrm{Eu}}^{2+},\phantom{\rule{0.16em}{0ex}}S=7/2$) with the moments aligned in the $ab$ plane while adjacent layers are aligned antiferromagnetically (i.e., A-type antiferromagnetism) below the N\'eel temperature.

[1]  Qc,et al.  Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2 , 2020, Nature Communications.

[2]  D. Johnston,et al.  Magnetic, thermal, and electronic-transport properties of EuMg2Bi2 single crystals , 2020, 2004.03753.

[3]  Lin Zhou,et al.  Manipulating magnetism in the topological semimetal EuCd2As2 , 2020, Physical Review B.

[4]  P. Oppeneer,et al.  Observation of multiple Dirac states in a magnetic topological material EuMg2Bi2 , 2019, 1912.08645.

[5]  P. Manuel,et al.  Magnetic and electronic structure of Dirac semimetal candidate EuMnSb2 , 2019, Physical Review B.

[6]  D. Johnston,et al.  Helical antiferromagnetic ordering in EuNi1.95As2 single crystals , 2019, Physical Review B.

[7]  L. Elcoro,et al.  Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: a new tool of the Bilbao Crystallographic Server. , 2019, Acta crystallographica. Section A, Foundations and advances.

[8]  N. Qureshi Mag2Pol: a program for the analysis of spherical neutron polarimetry, flipping ratio and integrated intensity data , 2018, Journal of Applied Crystallography.

[9]  Y. Shi,et al.  Anisotropic transport and optical spectroscopy study on antiferromagentic triangular lattice EuCd_2As_2: an interplay between magnetism and charge transport properties , 2016, 1604.07114.

[10]  Yang Zhang,et al.  Anomalous Hall effect in Weyl semimetal half-Heusler compounds RPtBi (R = Gd and Nd) , 2016, Proceedings of the National Academy of Sciences.

[11]  Q. Gibson,et al.  The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. , 2016, Nature materials.

[12]  Osama M Mustafa Magnetic , 2016, Medical Humanities.

[13]  D. Johnston,et al.  EuCo2P2: A Model Molecular-Field Helical Heisenberg Antiferromagnet , 2015, 1607.00247.

[14]  Yevhen Kushnirenko,et al.  Time-reversal symmetry breaking type-II Weyl state in YbMnBi2 , 2019, Nature Communications.

[15]  Emre S. Tasci,et al.  Symmetry-Based Computational Tools for Magnetic Crystallography , 2015 .

[16]  D. Johnston Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets , 2014, 1407.6353.

[17]  D. Johnston Magnetic susceptibility of collinear and noncollinear heisenberg antiferromagnets. , 2012, Physical review letters.

[18]  David J. Singh,et al.  Structure and properties of single crystalline CaMg2Bi2, EuMg2Bi2, and YbMg2Bi2. , 2011, Inorganic chemistry.

[19]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[20]  C. Zheng,et al.  Site preferences and bond length differences in CaAl2Si2-type Zintl compounds , 1986 .

[21]  W. Koehler,et al.  Magnetic form factor of Eu2+ in EuO , 1977 .

[22]  S. Borisenko Time-reversal symmetry breaking type II Weyl state in YbMnBi 2 , 2016 .

[23]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .