Distributed multipole analysis

The conventional multipole expansion gives a description of electrostatic interactions which is only useful at long distances. Distributed multipole analysis gives a description which is accurate at all accessible distances, and also gives a much more detailed and instructive picture of the charge distribution. We report our recent investigations into the method and comment on its limitations.

[1]  John S. Muenter,et al.  Electric dipole moments of low J states of H2O and D2O , 1973 .

[2]  A. Stone,et al.  A six-site intermolecular potential scheme for the azabenzene molecules, derived by crystal structure analysis , 1984 .

[3]  S. F. Boys Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy , 1973 .

[5]  A. Buckingham,et al.  Quadrupole moments of some simple molecules , 1968 .

[6]  R. Amos Multipole moments and polarizabilities of hydrogen fluoride. A comparison of confguration interaction and perturbation theory methods , 1982 .

[7]  Sarah L. Price,et al.  A DISTRIBUTED MULTIPOLE ANALYSIS OF THE CHARGE-DENSITIES OF THE AZABENZENE MOLECULES , 1983 .

[8]  V. Smith Theoretical Determination and Analysis of Electronic Charge Distributions , 1977 .

[9]  A. Stone,et al.  Spherical tensor theory of long-range intermolecular forces , 1984 .

[10]  R. Amos SCF and CI calculations of the one-electron properties, polarizabilities and polarizability derivatives of the nitrogen molecule , 1980 .

[11]  J. T. Brobjer,et al.  A method for calculating the electrostatic energy between small polar molecules. The multipole-fitted point-charge method , 1982 .

[12]  I. R. Mcdonald,et al.  Electrostatic interactions in molecular crystals , 1983 .

[13]  A. Dymanus,et al.  Magnetic Properties and Molecular Quadrupole Tensor of the Water Molecule by Beam‐Maser Zeeman Spectroscopy , 1970 .

[14]  D. L. Cooper,et al.  Distributed multipole analysis from charge partitioning by zero-flux surfaces: The structure of HF complexes , 1985 .

[15]  Peter Politzer,et al.  Properties of atoms in molecules. I. Proposed definition of the charge on an atom in a molecule , 1970 .

[16]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .

[17]  Hans-Joachim Werner,et al.  PNO-CI and PNO-CEPA studies of electron correlation effects , 1976 .

[18]  M. Alderton,et al.  Explicit formulae for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry , 1984 .

[19]  Patrick W. Fowler,et al.  Do electrostatic interactions predict structures of van der Waals molecules , 1983 .

[20]  A. Stone,et al.  THE ANISOTROPY OF THE CL2-CL2 PAIR POTENTIAL AS SHOWN BY THE CRYSTAL-STRUCTURE - EVIDENCE FOR INTERMOLECULAR BONDING OR LONE PAIR EFFECTS , 1982 .

[21]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[22]  W. Meerts,et al.  Electric and magnetic properties of carbon monoxide by molecular-beam electric-resonance spectroscopy , 1977 .

[23]  A. J. Duke,et al.  Quantum topology of molecular charge distributions. 1 , 1979 .

[24]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[25]  J. Muenter,et al.  Hyperfine Structure Constants of HF and DF , 1970 .