Extending the applicability of Newton's and Secant methods under regular smoothness

The concept of regular smoothness has been shown to be an appropriate and powerfull tool for the convergence of iterative procedures converging to a locally unique solution of an operator equation in a Banach space setting. Motivated by earlier works, and optimization considerations, we present a tighter semi-local convergence analysis using our new idea of restricted convergence domains. Numerical examples complete this study.

[1]  Ángel Alberto Magreñán,et al.  Different anomalies in a Jarratt family of iterative root-finding methods , 2014, Appl. Math. Comput..

[2]  A. Galperin,et al.  Regular smoothness and newton' method , 1994 .

[3]  Secant method with regularly continuous divided differences , 2006 .

[4]  Florian A. Potra,et al.  An error analysis for the secant method , 1982 .

[5]  M. J. Rubio,et al.  Secant-like methods for solving nonlinear integral equations of the Hammerstein type , 2000 .

[6]  Jochen W. Schmidt Eine Übertragung der Regula Falsi auf Gleichungen in Banachräumen I , 1963 .

[7]  Ángel Alberto Magreñán,et al.  A new tool to study real dynamics: The convergence plane , 2013, Appl. Math. Comput..

[8]  Jochen W. Schmidt Eine Übertragung der Regula Falsi auf Gleichungen in Banachräumen II Nichtlineare Gleichungssysteme , 1963 .

[9]  F. Potra An application of the induction method of V. Pták to the study of regula falsi , 1981 .

[10]  Ioannis K. Argyros,et al.  A unifying local–semilocal convergence analysis and applications for two-point Newton-like methods in Banach space , 2004 .

[11]  Ioannis K. Argyros,et al.  Weaker conditions for the convergence of Newton's method , 2012, J. Complex..

[12]  I. Argyros Convergence and Applications of Newton-type Iterations , 2008 .

[13]  S. Amat,et al.  Chaotic dynamics of a third-order Newton-type method , 2010 .

[14]  Jochen W. Schmidt Überlinear konvergente Mehrschrittverfahren vom Regula falsi‐ und Newton‐Typ , 1973 .