Visualizing Mutually Nondominating Solution Sets in Many-Objective Optimization

As many-objective optimization algorithms mature, the problem owner is faced with visualizing and understanding a set of mutually nondominating solutions in a high dimensional space. We review existing methods and present new techniques to address this problem. We address a common problem with the well-known heatmap visualization, since the often arbitrary ordering of rows and columns renders the heatmap unclear, by using spectral seriation to rearrange the solutions and objectives and thus enhance the clarity of the heatmap. A multiobjective evolutionary optimizer is used to further enhance the simultaneous visualization of solutions in objective and parameter space. Two methods for visualizing multiobjective solutions in the plane are introduced. First, we use RadViz and exploit interpretations of barycentric coordinates for convex polygons and simplices to map a mutually nondominating set to the interior of a regular convex polygon in the plane, providing an intuitive representation of the solutions and objectives. Second, we introduce a new measure of the similarity of solutions - the dominance distance - which captures the order relations between solutions. This metric provides an embedding in Euclidean space, which is shown to yield coherent visualizations in two dimensions. The methods are illustrated on standard test problems and data from a benchmark many-objective problem.

[1]  C. Spearman ‘FOOTRULE’ FOR MEASURING CORRELATION , 1906 .

[2]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[3]  Leo Katz,et al.  A Matrix Approach to the Analysis of Sociometric Data: Preliminary Report , 1946 .

[4]  W. S. Robinson A Method for Chronologically Ordering Archaeological Deposits , 1951, American Antiquity.

[5]  Teh-Hsing Wei,et al.  The algebraic foundations of ranking theory , 1952 .

[6]  M. Kendall Further contributions to the theory of paired comparisons , 1955 .

[7]  L. Adler A Modification of Kendall's Tau for the Case of Arbitrary Ties in Both Rankings , 1957 .

[8]  Claude Berge,et al.  The Theory Of Graphs , 1962 .

[9]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[10]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[11]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[12]  R. Graham,et al.  Spearman's Footrule as a Measure of Disarray , 1977 .

[13]  J. Gower Euclidean Distance Geometry , 1982 .

[14]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[15]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[16]  James P. Keener,et al.  The Perron-Frobenius Theorem and the Ranking of Football Teams , 1993, SIAM Rev..

[17]  Michael E. Tipping,et al.  NeuroScale: Novel Topographic Feature Extraction using RBF Networks , 1996, NIPS.

[18]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[19]  Georges G. Grinstein,et al.  DNA visual and analytic data mining , 1997 .

[20]  Bruce Hendrickson,et al.  A Spectral Algorithm for Seriation and the Consecutive Ones Problem , 1999, SIAM J. Comput..

[21]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[22]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[24]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[25]  Eser Kandogan Star Coordinates: A Multi-dimensional Visualization Technique with Uniform Treatment of Dimensions , 2000 .

[26]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[27]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[28]  A. Kaveh,et al.  Finite element mesh decomposition using complementary Laplacian matrix , 2000 .

[29]  Ian T. Nabney,et al.  Netlab: Algorithms for Pattern Recognition , 2002 .

[30]  Shigeru Obayashi,et al.  Pareto Solutions of Multipoint Design of Supersonic Wings Using Evolutionary Algorithms , 2002 .

[31]  I. Jolliffe Principal Component Analysis , 2002 .

[32]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[33]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[34]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[35]  Jonathan E. Fieldsend,et al.  Visualisation of multi-class ROC surfaces , 2005 .

[36]  R. Lyndon While,et al.  A Scalable Multi-objective Test Problem Toolkit , 2005, EMO.

[37]  Michael E. Tipping,et al.  Feed-forward neural networks and topographic mappings for exploratory data analysis , 1996, Neural Computing & Applications.

[38]  Ivan Bratko,et al.  VizRank: Data Visualization Guided by Machine Learning , 2006, Data Mining and Knowledge Discovery.

[39]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[40]  Evan J. Hughes,et al.  Radar Waveform Optimisation as a Many-Objective Application Benchmark , 2007, EMO.

[41]  Sanaz Mostaghim,et al.  Heatmap Visualization of Population Based Multi Objective Algorithms , 2007, EMO.

[42]  Jonathan E. Fieldsend,et al.  Multi-class ROC analysis from a multi-objective optimisation perspective , 2006, Pattern Recognit. Lett..

[43]  Tomohiro Yoshikawa,et al.  Visualization Techniques for Mining of Solutions , 2007 .

[44]  Mathieu Desbrun,et al.  Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..

[45]  Soon-Thiam Khu,et al.  An Investigation on Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[46]  Julio J. Valdés,et al.  Visualizing high dimensional objective spaces for multi-objective optimization: A virtual reality approach , 2007, 2007 IEEE Congress on Evolutionary Computation.

[47]  Tao Ju,et al.  A general geometric construction of coordinates in a convex simplicial polytope , 2007, Comput. Aided Geom. Des..

[48]  Mario Köppen,et al.  Visualization of Pareto-Sets in Evolutionary Multi-Objective Optimization , 2007, 7th International Conference on Hybrid Intelligent Systems (HIS 2007).

[49]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[50]  Georges G. Grinstein,et al.  Vectorized Radviz and Its Application to Multiple Cluster Datasets , 2008, IEEE Transactions on Visualization and Computer Graphics.

[51]  Pragya Agarwal,et al.  Self-Organising Maps , 2008 .

[52]  Ujjwal Maulik,et al.  Multiobjective evolutionary approach to cost-effective traffic grooming in unidirectional SONET/WDM rings , 2008, Photonic Network Communications.

[53]  M. El-Sharkawi,et al.  Introduction to Evolutionary Computation , 2008 .

[54]  René van den Brink,et al.  The Outflow Ranking Method for Weighted Directed Graphs , 2006, Eur. J. Oper. Res..

[55]  Carlos A. Coello Coello,et al.  Two novel approaches for many-objective optimization , 2010, IEEE Congress on Evolutionary Computation.

[56]  Andrew Lewis,et al.  Interactive multi-objective particle swarm optimization with heatmap-visualization-based user interface , 2010 .

[57]  C. Spearman The proof and measurement of association between two things. , 2015, International journal of epidemiology.

[58]  Innar Liiv,et al.  Seriation and matrix reordering methods: An historical overview , 2010, Stat. Anal. Data Min..

[59]  Jonathan E. Fieldsend,et al.  Visualisation and ordering of many-objective populations , 2010, IEEE Congress on Evolutionary Computation.

[60]  Elmar Kiesling,et al.  An Experimental Comparison of Two Interactive Visualization Methods for Multicriteria Portfolio Selection , 2011 .

[61]  Tea Tusar,et al.  Visualizing 4D approximation sets of multiobjective optimizers with prosections , 2011, GECCO '11.

[62]  Wendy Johnson,et al.  Introduction to Evolutionary Computation (lesson & activity) , 2012 .

[63]  Georges G. Grinstein,et al.  Properties of normalized radial visualizations , 2012, Inf. Vis..

[64]  Tomohiro Yoshikawa,et al.  Knowledge extraction in multi-objective optimization problem based on visualization of Pareto solutions , 2012, 2012 IEEE Congress on Evolutionary Computation.