Downregulation of caveolin by chronic beta-adrenergic receptor stimulation in mice.

Caveolae, flask-shaped invaginations of cell membranes, are believed to play pivotal roles in transmembrane transportation of molecules and cellular signaling. Caveolin, a structural component of caveolae, interacts directly with G proteins and regulates their function. We investigated the effect of chronic beta-adrenergic receptor stimulation on the expression of caveolin subtypes in mouse hearts by immunoblotting and Northern blotting. Caveolin-1 and -3 were abundantly expressed in the heart and skeletal muscles, but not in the brain. Continuous (-)-isoproterenol, but not (+)-isoproterenol, infusion via osmotic minipump (30 micrograms.g-1.day-1) for 13 days significantly downregulated both caveolin subtypes in the heart. The expression of caveolin-1 was reduced by 48 +/- 6.1% and that of caveolin-3 by 28 +/- 4.0% (P < 0.01, n = 8 for each). The subcellular distribution of caveolin subtypes in ventricular myocardium was not altered as determined by sucrose gradient fractionation. In contrast, the expression of both caveolin subtypes in skeletal muscles was not significantly changed. Our data suggest that the expression of caveolin subtypes is regulated by beta-adrenergic receptor stimulation in the heart.