Low loss and magnetic field-tunable superconducting terahertz metamaterial.

Superconducting terahertz (THz) metamaterial (MM) made from niobium (Nb) film has been investigated using a continuous-wave THz spectroscopy. The quality factors of the resonance modes at 0.132 THz and 0.418 THz can be remarkably increased when the working temperature is below the superconducting transition temperature of Nb, indicating that the use of superconducting Nb is a possible way to achieve low loss performance of a THz MM. In addition, the tuning of superconducting THz MM by a magnetic field is also demonstrated, which offers an alternative tuning method apart from the existing electric, optical and thermal tuning methods.

[1]  Eleftherios N. Economou,et al.  Broadband blueshift tunable metamaterials and dual-band switches , 2009 .

[2]  A. Grbic,et al.  Overcoming the diffraction limit with a planar left-handed transmission-line lens. , 2004, Physical review letters.

[3]  Steven M. Anlage,et al.  The physics and applications of superconducting metamaterials , 2010, 1004.3226.

[4]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[5]  Clem,et al.  Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors. , 1991, Physical review letters.

[6]  Weili Zhang,et al.  Transmission properties of terahertz pulses through subwavelength double split-ring resonators. , 2006, Optics letters.

[7]  Sergei A. Tretyakov,et al.  Contemporary notes on metamaterials , 2007 .

[8]  S. Anlage,et al.  Tunability of Superconducting Metamaterials , 2006, IEEE Transactions on Applied Superconductivity.

[9]  M. Kafesaki,et al.  Electric coupling to the magnetic resonance of split ring resonators , 2004 .

[10]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[11]  David R. Smith,et al.  Dual-band planar electric metamaterial in the terahertz regime. , 2008, Optics express.

[12]  N. Ida Microwave Measurement Techniques , 1992 .

[13]  Willie J. Padilla,et al.  Electrically resonant terahertz metamaterials: Theoretical and experimental investigations , 2007 .

[14]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[15]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[16]  C. Péroz,et al.  Flux flow properties of niobium thin films in clean and dirty superconducting limits , 2005 .

[17]  Carsten Rockstuhl,et al.  Cryogenic temperatures as a path toward high-Q terahertz metamaterials , 2010 .

[18]  M. Dressel,et al.  Direct observation of the superconducting energy gap developing in the conductivity spectra of niobium , 1998 .

[19]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[20]  Fritz Keilmann,et al.  Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide , 2008 .

[21]  Abul K. Azad,et al.  Active Terahertz Metamaterial Devices , 2008 .

[22]  P. Kužel,et al.  Terahertz surface resistance of high temperature superconducting thin films , 2000 .