Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data

[1]  K. Itten,et al.  Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX) , 2015 .

[2]  M. Schaepman,et al.  FLD-based retrieval of sun-induced chlorophyll fluorescence from medium spectral resolution airborne spectroscopy data , 2014 .

[3]  Michael E. Schaepman,et al.  Correction of Reflectance Anisotropy Effects of Vegetation on Airborne Spectroscopy Data and Derived Products , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[4]  S. Fleck,et al.  Within-canopy variation in photosynthetic capacity, SLA and foliar N in temperate broad-leaved trees with contrasting shade tolerance , 2014, Trees.

[5]  M. Aubinet,et al.  Vertical canopy gradient in photosynthesis and monoterpenoid emissions: an insight into the chemistry and physiology behind , 2013 .

[6]  W. Verhoef,et al.  A Bayesian object based approach for estimating vegetation biophysical and biochemical variables from APEX at sensor radiance data , 2013 .

[7]  P. Zarco-Tejada,et al.  Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance , 2013 .

[8]  M. Schaepman,et al.  Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer , 2013 .

[9]  João Roberto dos Santos,et al.  View-illumination effects on hyperspectral vegetation indices in the Amazonian tropical forest , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[10]  Andreas Hueni,et al.  Airborne Prism Experiment Calibration Information System , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[11]  John A. Gamon,et al.  Facultative and constitutive pigment effects on the Photochemical Reflectance Index (PRI) in sun and shade conifer needles , 2012 .

[12]  Mark A. Richardson,et al.  Illumination invariance and shadow compensation via spectro-polarimetry technique , 2012 .

[13]  Thomas Hilker,et al.  Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: I. Model formulation , 2011 .

[14]  Wout Verhoef,et al.  Inversion of a coupled canopy–atmosphere model using multi-angular top-of-atmosphere radiance data: A forest case study , 2011 .

[15]  W. Verhoef,et al.  Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence , 2011 .

[16]  Michal Shimoni,et al.  A shadow detection method for remote sensing images using VHR hyperspectral and LIDAR data , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[17]  W. Verhoef,et al.  Estimating forest variables from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models , 2011 .

[18]  Thomas Hilker,et al.  Tracking plant physiological properties from multi-angular tower-based remote sensing , 2011, Oecologia.

[19]  Andreas Hueni,et al.  APEX - current status, performance and validation concept , 2010, 2010 IEEE Sensors.

[20]  J. Moreno,et al.  Remote sensing of sun‐induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP) , 2010 .

[21]  W. Verhoef,et al.  An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance , 2009 .

[22]  Luis Alonso,et al.  Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications , 2009 .

[23]  Luis Alonso,et al.  CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands. , 2009 .

[24]  Thomas Hilker,et al.  Linking foliage spectral responses to canopy-level ecosystem photosynthetic light-use efficiency at a Douglas-fir forest in Canada , 2009 .

[25]  B. B. Deminicis,et al.  Photoinhibition of the photosynthesis. , 2009 .

[26]  Stefan Adriaensen,et al.  Structure, Components, and Interfaces of the Airborne Prism Experiment (APEX) Processing and Archiving Facility , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Luis Alonso,et al.  Improved Fraunhofer Line Discrimination Method for Vegetation Fluorescence Quantification , 2008, IEEE Geoscience and Remote Sensing Letters.

[28]  N. Baker Chlorophyll fluorescence: a probe of photosynthesis in vivo. , 2008, Annual review of plant biology.

[29]  N. Coops,et al.  Multi-Angle Remote Sensing of Forest Light Use Efficiency , 2007 .

[30]  W. Verhoef,et al.  Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data , 2007 .

[31]  Peter R. J. North,et al.  Improved global simulations of gross primary product based on a separate and explicit treatment of diffuse and direct sunlight , 2007 .

[32]  S. Los,et al.  The impact of diffuse sunlight on canopy light‐use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes , 2007 .

[33]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[34]  Govindjee,et al.  Chlorophyll a Fluorescence: A Signature of Photosynthesis , 2006 .

[35]  B. Logan,et al.  Chlorophyll a Fluorescence: A Signature of Photosynthesis , 2005 .

[36]  Nadine Gobron,et al.  Coupling diffuse sky radiation and surface albedo , 2005 .

[37]  James A. Gardner,et al.  MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options , 2004, SPIE Asia-Pacific Remote Sensing.

[38]  F. Woodward,et al.  Vegetation dynamics – simulating responses to climatic change , 2004, Biological reviews of the Cambridge Philosophical Society.

[39]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[40]  P. Reich,et al.  Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest , 1993, Oecologia.

[41]  Govindjee,et al.  Chlorophyll a Fluorescence: A Bit of Basics and History , 2004 .

[42]  W. Verhoef,et al.  Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models , 2003 .

[43]  Yuri Knyazikhin,et al.  Evaluation of spectrodirectional alfalfa canopy data acquired during DAISEX'99 , 2003, IEEE Trans. Geosci. Remote. Sens..

[44]  C. Tucker,et al.  Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999 , 2003, Science.

[45]  W. Verhoef,et al.  Remote sensing data assimilation using coupled radiative transfer models , 2003 .

[46]  S. W. Maier,et al.  Sun-induced fluorescence: A new tool for precision farming , 2003 .

[47]  James A. Gardner,et al.  Algorithm for de-shadowing spectral imagery , 2002, SPIE Optics + Photonics.

[48]  Alan H. Strahler,et al.  Bidirectional NDVI and atmospherically resistant BRDF inversion for vegetation canopy , 2002, IEEE Trans. Geosci. Remote. Sens..

[49]  R. Richter,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction , 2002 .

[50]  Daniel Schläpfer,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 1: Parametric orthorectification , 2002 .

[51]  P. North,et al.  Remote sensing of canopy light use efficiency using the photochemical reflectance index , 2001 .

[52]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[53]  C. V. M. Bartona,et al.  Remote sensing of canopy light use efficiency using the photochemical reflectance index Model and sensitivity analysis , 2000 .

[54]  Jean-Philippe Gastellu-Etchegorry,et al.  Modeling BRF and Radiation Regime of Boreal and Tropical Forests: I. BRF , 1999 .

[55]  J. Cihlar,et al.  NDVI Directionality in Boreal Forests: A Model Interpretation of Measurements , 1997 .

[56]  D. Pury,et al.  Simple scaling of photosynthesis from leaves to canopies without the errors of big‐leaf models , 1997 .

[57]  H. Mooney,et al.  Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere , 1997, Science.

[58]  Steven F. Oberbauer,et al.  Leaf optical properties along a vertical gradient in a tropical rain forest canopy in Costa Rica. , 1995 .

[59]  N. Baker,et al.  Photoinhibition of photosynthesis , 1994 .

[60]  Paul G. Falkowski,et al.  Photoinhibition of Photosynthesis in Nature , 1994 .

[61]  F. C. Hooper,et al.  Anisotropic sky radiance model based on narrow field of view measurements of shortwave radiance , 1993 .

[62]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[63]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[64]  Richard A. Bone,et al.  CORRELATES OF LEAF OPTICAL PROPERTIES IN TROPICAL FOREST SUN AND EXTREME‐SHADE PLANTS , 1990 .

[65]  J. Hay,et al.  Estimating Solar Irradiance on Inclined Surfaces: A Review and Assessment of Methodologies , 1985 .

[66]  W. Verhoef Earth observation modelling based on layer scattering matrices , 1984 .

[67]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[68]  J. Hay Calculation of monthly mean solar radiation for horizontal and inclined surfaces , 1979 .

[69]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[70]  J. A. Plascyk The MK II Fraunhofer Line Discriminator (FLD-II) for Airborne and Orbital Remote Sensing of Solar-Stimulated Luminescence , 1975 .

[71]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .