A Glimpse into Quantum Triplet Structures in Supercritical 3He

A methodological study of triplet structures in quantum matter is presented. The focus is on helium-3 under supercritical conditions (4 < T/K < 9; 0.022 < ρN/Å−3 < 0.028), for which strong quantum diffraction effects dominate the behavior. Computational results for the triplet instantaneous structures are reported. Path integral Monte Carlo (PIMC) and several closures are utilized to obtain structure information in the real and the Fourier spaces. PIMC involves the fourth-order propagator and the SAPT2 pair interaction potential. The main triplet closures are: AV3, built as the average of the Kirkwood superposition and the Jackson–Feenberg convolution, and the Barrat–Hansen–Pastore variational approach. The results illustrate the main characteristics of the procedures employed by concentrating on the salient equilateral and isosceles features of the computed structures. Finally, the valuable interpretive role of closures in the triplet context is highlighted.

[1]  Luis M Sesé,et al.  Real Space Triplets in Quantum Condensed Matter: Numerical Experiments Using Path Integrals, Closures, and Hard Spheres , 2020, Entropy.

[2]  Fabrizio Gagliardi,et al.  The international race towards Exascale in Europe , 2019, CCF Trans. High Perform. Comput..

[3]  L. M. Sesé,et al.  On static triplet structures in fluids with quantum behavior. , 2018, The Journal of chemical physics.

[4]  L. Sesé Path-integral and Ornstein-Zernike computations of quantum fluid structures under strong fluctuations , 2017 .

[5]  L. Sesé Path Integrals and Effective Potentials in the Study of Monatomic Fluids at Equilibrium , 2016 .

[6]  L. M. Sesé,et al.  Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line. , 2016, The Journal of chemical physics.

[7]  C. Herrero,et al.  Path-integral simulation of solids , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[8]  L. Sesé On the accurate direct computation of the isothermal compressibility for normal quantum simple fluids: application to quantum hard spheres. , 2012, The Journal of chemical physics.

[9]  Alejandro Pérez,et al.  Improving the convergence of closed and open path integral molecular dynamics via higher order Trotter factorization schemes. , 2011, The Journal of chemical physics.

[10]  L. Sesé A study of the pair and triplet structures of the quantum hard-sphere Yukawa fluid. , 2009, The Journal of chemical physics.

[11]  L. Sesé Computational study of the structures of gaseous helium-3 at low temperature. , 2008, The journal of physical chemistry. B.

[12]  Gregory A. Voth,et al.  Path‐Integral Centroid Methods in Quantum Statistical Mechanics and Dynamics , 2007 .

[13]  B. Svistunov,et al.  Worm algorithm and diagrammatic Monte Carlo: a new approach to continuous-space path integral Monte Carlo simulations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  L. Sesé Triplet correlations in the quantum hard-sphere fluid. , 2005, The Journal of chemical physics.

[15]  M. Boninsegni Permutation Sampling in Path Integral Monte Carlo , 2005, physics/0506020.

[16]  V. Arp,et al.  Density Equation for Saturated 3He , 2005 .

[17]  L. Brualla,et al.  Higher order and infinite Trotter-number extrapolations in path integral Monte Carlo. , 2004, The Journal of chemical physics.

[18]  L. Sesé The compressibility theorem for quantum simple fluids at equilibrium , 2003 .

[19]  Soonmin Jang,et al.  Applications of higher order composite factorization schemes in imaginary time path integral simulations , 2001 .

[20]  A. Baumketner,et al.  Finite-size dependence of the bridge function extracted from molecular dynamics simulations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  J. Abascal,et al.  On the triplet structure of binary liquids , 2000 .

[22]  Martin H. Müser,et al.  Path integral simulations of rotors: theory and applications , 1999 .

[23]  L. Sesé Thermodynamic and structural properties of the path-integral quantum hard-sphere fluid , 1998 .

[24]  R. A. Aziz,et al.  An accurate potential energy curve for helium based on ab initio calculations , 1997 .

[25]  K. Szalewicz,et al.  Helium dimer potential from symmetry-adapted perturbation theory calculations using large Gaussian geminal and orbital basis sets , 1997 .

[26]  Siu A. Chin,et al.  Symplectic integrators from composite operator factorizations , 1997 .

[27]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[28]  G. Kahl,et al.  Triplet correlation functions for hard‐spheres: Computer simulation results , 1994 .

[29]  D. Ceperley,et al.  Path-integral calculations of normal liquid 3He. , 1992, Physical review letters.

[30]  William H. Press,et al.  Numerical recipes , 1990 .

[31]  Evans,et al.  Three-particle contribution to the configurational entropy of simple fluids. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[32]  Runge,et al.  Solid-fluid phase transition of quantum hard spheres at finite temperatures. , 1988, Physical review. B, Condensed matter.

[33]  J. Hansen,et al.  On the equilibrium structure of dense fluids , 1988 .

[34]  V. Skripov,et al.  The Structure of Simple Liquids , 1983 .

[35]  B. Berne,et al.  On path integral Monte Carlo simulations , 1982 .

[36]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[37]  S. Rice,et al.  An accurate integral equation for the pair and triplet distribution functions of a simple liquid , 1981 .

[38]  Minoru Tanaka,et al.  Simulation of the Three-Particle Distribution Function in a Long-Range Oscillatory Potential Liquid , 1975 .

[39]  Lloyd L. Lee,et al.  Correlation functions of classical fluids. III. The method of partition function variation applied to the chemical potential: Cases of PY and HNC2 , 1974 .

[40]  Rj Baxter,et al.  Ornstein-Zernike relation for a disordered fluid , 1968 .

[41]  R. J. Baxter Direct Correlation Functions and Their Derivatives with Respect to Particle Density , 1964 .

[42]  H. W. Jackson,et al.  ENERGY SPECTRUM OF ELEMENTARY EXCITATIONS IN HELIUM II , 1962 .

[43]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[44]  Angelika Fruehauf,et al.  A First Course In Numerical Analysis , 2016 .

[45]  Antje Sommer,et al.  Theory Of Simple Liquids , 2016 .

[46]  J.,et al.  A new quantum propagator for hard sphere and cavity systems , 1999 .

[47]  M. Suzuki,et al.  New Scheme of Hybrid Exponential Product Formulas with Applications to Quantum Monte-Carlo Simulations , 1995 .

[48]  C. Brooks Computer simulation of liquids , 1989 .

[49]  Bruce J. Berne,et al.  On the Simulation of Quantum Systems: Path Integral Methods , 1986 .

[50]  Leland Ray Whitney,et al.  Theory of Quantum Fluids. , 1981 .

[51]  A. Ralston A first course in numerical analysis , 1965 .