dbCNV: deleteriousness-based model to predict pathogenicity of copy number variations

[1]  S. Mundlos,et al.  TADA—a machine learning tool for functional annotation-based prioritisation of pathogenic CNVs , 2022, Genome Biology.

[2]  O. Pös,et al.  Automated prediction of the clinical impact of structural copy number variations , 2022, Scientific Reports.

[3]  Zhiyu Peng,et al.  AutoCNV: a semiautomatic CNV interpretation system based on the 2019 ACMG/ClinGen Technical Standards for CNVs , 2021, BMC Genomics.

[4]  Tieliu Shi,et al.  X-CNV: genome-wide prediction of the pathogenicity of copy number variations , 2021, Genome medicine.

[5]  E. Thorland,et al.  Limited diagnostic impact of duplications <1 Mb of uncertain clinical significance: a 10-year retrospective analysis of reporting practices at the Mayo Clinic , 2020, Genetics in Medicine.

[6]  Tatiana A. Gurbich,et al.  ClassifyCNV: a tool for clinical annotation of copy-number variants , 2020, Scientific Reports.

[7]  Michael J. Purcaro,et al.  Expanded encyclopaedias of DNA elements in the human and mouse genomes , 2020, Nature.

[8]  Andrew G. Sharo,et al.  StrVCTVRE: A supervised learning method to predict the pathogenicity of human genome structural variants , 2020, bioRxiv.

[9]  Tariq Ahmad,et al.  A structural variation reference for medical and population genetics , 2020, Nature.

[10]  Melissa J. Landrum,et al.  ClinVar: improvements to accessing data , 2019, Nucleic Acids Res..

[11]  S. South,et al.  Technical standards for the interpretation and reporting of constitutional copy number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen) , 2019, Genetics in Medicine.

[12]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[13]  J. Gécz,et al.  Pathogenic copy number variants that affect gene expression contribute to genomic burden in cerebral palsy , 2018 .

[14]  David Haussler,et al.  The UCSC Genome Browser database: 2019 update , 2018, Nucleic Acids Res..

[15]  S. Mundlos,et al.  Structural variation in the 3D genome , 2018, Nature Reviews Genetics.

[16]  D. Stavropoulos,et al.  Practice guideline: joint CCMG-SOGC recommendations for the use of chromosomal microarray analysis for prenatal diagnosis and assessment of fetal loss in Canada , 2018, Journal of Medical Genetics.

[17]  Chunlei Liu,et al.  ClinVar: improving access to variant interpretations and supporting evidence , 2017, Nucleic Acids Res..

[18]  Brent S. Pedersen,et al.  A map of constrained coding regions in the human genome , 2017, bioRxiv.

[19]  Yufeng Shen,et al.  Distinct epigenomic patterns are associated with haploinsufficiency and predict risk genes of developmental disorders , 2017, Nature Communications.

[20]  J. Lupski,et al.  Efficient CNV breakpoint analysis reveals unexpected structural complexity and correlation of dosage‐sensitive genes with clinical severity in genomic disorders , 2017, Human molecular genetics.

[21]  Trevor Hastie,et al.  REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. , 2016, American journal of human genetics.

[22]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[23]  Christopher S. Poultney,et al.  Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci , 2015, Neuron.

[24]  Heidi L Rehm,et al.  ClinGen--the Clinical Genome Resource. , 2015, The New England journal of medicine.

[25]  Caleb Webber,et al.  Haploinsufficiency predictions without study bias , 2015, Nucleic acids research.

[26]  A. Pombo,et al.  Three-dimensional genome architecture: players and mechanisms , 2015, Nature Reviews Molecular Cell Biology.

[27]  J. R. MacDonald,et al.  A copy number variation map of the human genome , 2015, Nature Reviews Genetics.

[28]  François Schiettecatte,et al.  OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders , 2014, Nucleic Acids Res..

[29]  Kali T. Witherspoon,et al.  Refining analyses of copy number variation identifies specific genes associated with developmental delay , 2014, Nature Genetics.

[30]  Lars Feuk,et al.  The Database of Genomic Variants: a curated collection of structural variation in the human genome , 2013, Nucleic Acids Res..

[31]  Caroline F. Wright,et al.  DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation , 2013, Nucleic Acids Res..

[32]  Chao Chen,et al.  dbVar and DGVa: public archives for genomic structural variation , 2012, Nucleic Acids Res..

[33]  Jing Hu,et al.  SIFT web server: predicting effects of amino acid substitutions on proteins , 2012, Nucleic Acids Res..

[34]  E. Boerwinkle,et al.  dbNSFP: A Lightweight Database of Human Nonsynonymous SNPs and Their Functional Predictions , 2011, Human mutation.

[35]  Serafim Batzoglou,et al.  Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP++ , 2010, PLoS Comput. Biol..

[36]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[37]  François Schiettecatte,et al.  OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders , 2014, Nucleic Acids Res..

[38]  M. Owen,et al.  schizophrenia-associated loci Analysis of copy number variations at 15 , 2014 .

[39]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..