Engineered perovskite LaCoO3/rGO nanocomposites for asymmetrical electrochemical supercapacitor application

[1]  N. S. Kumar,et al.  A review on perovskite solar cells (PSCs), materials and applications , 2021 .

[2]  Abdullah M. Asiri,et al.  Recent advances in perovskite oxides as electrode materials for supercapacitors. , 2021, Chemical communications.

[3]  Jiaguo Yu,et al.  Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors. , 2020, Journal of colloid and interface science.

[4]  Zijiong Li,et al.  Enhancing the Electrochemical Properties of LaCoO3 by Sr-Doping, rGO-Compounding with Rational Design for Energy Storage Device , 2020, Nanoscale Research Letters.

[5]  Shen Chen,et al.  Developing Low-Cost, High Performance, Robust and Sustainable Perovskite Electrocatalytic Materials in the Electrochemical Sensors and Energy Sectors: “An Overview” , 2020, Catalysts.

[6]  Mingrui Wei,et al.  Facile Synthesis of LaCoO3 with a High Oxygen Vacancy Concentration by the Plasma Etching Technique for High-Performance Oxygen Ion Intercalation Pseudocapacitors , 2020 .

[7]  V. Rajendran,et al.  All-printed, interdigitated, freestanding serpentine interconnects based flexible solid state supercapacitor for self powered wearable electronics , 2019, Nano Energy.

[8]  Y. Gogotsi,et al.  Organic-inorganic all-pseudocapacitive asymmetric energy storage devices , 2019, Nano Energy.

[9]  Bin Yue,et al.  Facile Synthesis and Electrochemical Properties of Perovskite‐type CeMnO 3 Nanofibers , 2019, ChemistrySelect.

[10]  Danielle M. Butts,et al.  Achieving high energy density and high power density with pseudocapacitive materials , 2019, Nature Reviews Materials.

[11]  Wei Zhang,et al.  Nanosheet-assembled LaMnO3@NiCo2O4 nanoarchitecture growth on Ni foam for high power density supercapacitors , 2019, Electrochimica Acta.

[12]  Yaping Du,et al.  Rare earth double perovskites: a fertile soil in the field of perovskite oxides , 2019, Inorganic Chemistry Frontiers.

[13]  R. E. Schaak,et al.  Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. , 2019, ACS nano.

[14]  X. Xiao,et al.  Creating oxygen-vacancies in MoO3- nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan , 2019, Nano Energy.

[15]  A. C. Bose,et al.  Perovskite oxide LaCoO3 electrode as high performance pseudocapacitor , 2019 .

[16]  Meilin Liu,et al.  Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions , 2019, Journal of Materials Chemistry A.

[17]  K. B. Babu Naidu,et al.  Microwave heated lead cobalt titanate nanoparticles synthesized by sol-gel technique: Structural, morphological, dielectric, impedance and ferroelectric properties , 2019, Materials Science and Engineering: B.

[18]  B. Bedürftig,et al.  Investigation of the low frequency Warburg impedance of Li-ion cells by frequency domain measurements , 2019, Journal of Energy Storage.

[19]  Subramani Kaipannan,et al.  Fabrication of 9.6 V High-performance Asymmetric Supercapacitors Stack Based on Nickel Hexacyanoferrate-derived Ni(OH)2 Nanosheets and Bio-derived Activated Carbon , 2019, Scientific Reports.

[20]  L. Jia,et al.  Self-assembly photocatalytic reduction synthesis of graphene-encapusulated LaNiO3 nanoreactor with high efficiency and stability for photocatalytic water splitting to hydrogen , 2019, Chemical Engineering Journal.

[21]  F. Tezel,et al.  Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors , 2018, Journal of Energy Storage.

[22]  Zhiping Luo,et al.  Effect of doping on the performance of high-crystalline SrMnO3 perovskite nanofibers as a supercapacitor electrode , 2018, Ceramics International.

[23]  F. Ciucci,et al.  Mechanochemical Coupling of MoS2 and Perovskites for Hydrogen Generation , 2018, ACS Applied Energy Materials.

[24]  A. Vinu,et al.  Electrochemical Material Processing via Continuous Charge-Discharge Cycling: Enhanced Performance upon Cycling for Porous LaMnO3 Perovskite Supercapacitor Electrodes , 2018, ChemElectroChem.

[25]  N. S. Kumar,et al.  Sol-gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y = 0.2–0.8) nanoparticles: Structural, morphological and dielectric properties , 2018, Ceramics International.

[26]  William G. Hardin,et al.  Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1−xFexO4±δ Ruddlesden-Popper oxides , 2018, Nature Communications.

[27]  Jun Huang,et al.  Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond , 2018, Electrochimica Acta.

[28]  D. Geng,et al.  Assemblage of Perovskite LaNiO3 Connected With In Situ Grown Nitrogen‐Doped Carbon Nanotubes as High‐Performance Electrocatalyst for Oxygen Evolution Reaction , 2018, physica status solidi (a).

[29]  N. Suresh Kumar,et al.  Structural, morphological, electrical, impedance and ferroelectric properties of BaO-ZnO-TiO2 ternary system , 2018, Journal of the Australian Ceramic Society.

[30]  E. Kymakis,et al.  Perovskite nanostructures for photovoltaic and energy storage devices , 2018 .

[31]  Yufeng Zhao,et al.  Interface-rich core-shell ammonium nickel cobalt phosphate for high-performance aqueous hybrid energy storage device without a depressed power density , 2018 .

[32]  Hui Xu,et al.  Three-dimensional nitrogen-doped graphene wrapped LaMnO3 nanocomposites as high-performance supercapacitor electrodes , 2018 .

[33]  J. Irvine,et al.  Synthesis and applications of nanoporous perovskite metal oxides , 2018, Chemical science.

[34]  Yury Gogotsi,et al.  Energy Storage in Nanomaterials - Capacitive, Pseudocapacitive, or Battery-like? , 2018, ACS nano.

[35]  A. Eftekhari The mechanism of ultrafast supercapacitors , 2018 .

[36]  Xiaoping Song,et al.  Enhanced cycling stability of hierarchical NiCo2S4@Ni(OH)2@PPy core–shell nanotube arrays for aqueous asymmetric supercapacitors , 2018 .

[37]  Mingrui Wei,et al.  Perovskite LaNiO3-δ oxide as an anion-intercalated pseudocapacitor electrode , 2018 .

[38]  C. Breitkopf,et al.  Determination of Diffusion Coefficients Using Impedance Spectroscopy Data , 2018 .

[39]  Zijiong Li,et al.  Two-dimensional perovskite LaNiO 3 nanosheets with hierarchical porous structure for high-rate capacitive energy storage , 2017 .

[40]  Meilin Liu,et al.  A high-performance electrode for supercapacitors: Silver nanoparticles grown on a porous perovskite-type material La0.7Sr0.3CoO3−δ substrate , 2017 .

[41]  Xiaoying Hu,et al.  Supercapacitor performance of perovskite La1-xSrxMnO3. , 2017, Dalton transactions.

[42]  Tianyu Liu,et al.  Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. , 2017, Nanoscale.

[43]  Lei Zhang,et al.  Hollow spherical LaNiO3 supercapacitor electrode synthesized by a facile template-free method , 2017 .

[44]  Zongping Shao,et al.  Rational Design of LaNiO3/Carbon Composites as Outstanding Platinum‐Free Photocathodes in Dye‐Sensitized Solar Cells With Enhanced Catalysis for the Triiodide Reduction Reaction , 2017 .

[45]  Thomas Chung-Kuang Yang,et al.  The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications , 2017 .

[46]  Xiaogang Zhang,et al.  Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization , 2017 .

[47]  Qiunan Liu,et al.  LaNiO3-nanorod/graphene composite as an efficient bi-functional catalyst for zinc–air batteries , 2016 .

[48]  Zongping Shao,et al.  Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect. , 2016, ACS applied materials & interfaces.

[49]  L. Qin,et al.  Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight , 2016, Scientific Reports.

[50]  Shouheng Sun,et al.  Controlled growth of LaFeO3 nanoparticles on reduced graphene oxide for highly efficient photocatalysis. , 2016, Nanoscale.

[51]  Lele Peng,et al.  Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage. , 2016, Nano letters.

[52]  Xueqin Zhang,et al.  Symmetric/Asymmetric Supercapacitor Based on the Perovskite-type Lanthanum Cobaltate Nanofibers with Sr-substitution. , 2015 .

[53]  Xueqin Zhang,et al.  Sr-doped Lanthanum Nickelate Nanofibers for High Energy Density Supercapacitors , 2015 .

[54]  Jinwoo Lee,et al.  Facile Synthesis of Nb2O5@Carbon Core-Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. , 2015, ACS nano.

[55]  이진우 Facile Synthesis of Nb2O5@Carbon Core-Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors , 2015 .

[56]  M. El‐Kady,et al.  Graphene-based materials for flexible supercapacitors. , 2015, Chemical Society reviews.

[57]  B. Dunn,et al.  High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. , 2015, Nano letters.

[58]  K. Liang,et al.  LaNiO3/NiO hollow nanofibers with mesoporous wall: a significant improvement in NiO electrodes for supercapacitors , 2015, Journal of Solid State Electrochemistry.

[59]  Woo-Gwang Jung,et al.  Facile and safe graphene preparation on solution based platform , 2014 .

[60]  X. D. Xu,et al.  Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis , 2014 .

[61]  William G. Hardin,et al.  Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. , 2014, Nature materials.

[62]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[63]  Jianjun Jiang,et al.  Highly conductive NiCo₂S₄ urchin-like nanostructures for high-rate pseudocapacitors. , 2013, Nanoscale.

[64]  B. Wei,et al.  Mesoporous LaNiO3/NiO nanostructured thin films for high-performance supercapacitors , 2013 .

[65]  Zhanwei Xu,et al.  Electrochemical Supercapacitor Electrodes from Sponge-like Graphene Nanoarchitectures with Ultrahigh Power Density. , 2012, The journal of physical chemistry letters.

[66]  K. Stevenson,et al.  High pseudocapacitance of MnO2 nanoparticles in graphitic disordered mesoporous carbon at high scan rates , 2012 .

[67]  G. R. Rao,et al.  Ultralayered Co3O4 for High-Performance Supercapacitor Applications , 2011 .

[68]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[69]  Ankudinov,et al.  Multiple-scattering calculations of x-ray-absorption spectra. , 1995, Physical review. B, Condensed matter.