Floating-point on-line arithmetic: Algorithms

For effective application of on-line arithmetic to practical numerical problems, floating-point algorithms for on-line addition/subtraction and multiplication have been implemented by introducing the notion of quasi-normalization. Those proposed are normalized fixed-precision FLPOL (floating-point on-line) algorithms.

[1]  Milos D. Ercegovac A General Hardware-Oriented Method for Evaluation of Functions and Computations in a Digital Computer , 1977, IEEE Transactions on Computers.

[2]  Duncan H. Lawrie,et al.  High Speed Computer and Algorithm Organization , 1977 .

[3]  Mary Jane Irwin An arithmetic unit for on-line computation. , 1977 .

[4]  David L. Kuck,et al.  The Structure of Computers and Computations , 1978 .

[5]  Kishor S. Trivedi,et al.  On-line algorithms for division and multiplication , 1975, 1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH).

[6]  Milos D. Ercegovac,et al.  An on-line square rooting algorithm , 1978, 1978 IEEE 4th Symposium onomputer Arithmetic (ARITH).

[7]  J. M. Yohe,et al.  Roundings in floating point arithmetic , 1972, IEEE Symposium on Computer Arithmetic.

[8]  A. Avizeinis,et al.  Signed Digit Number Representations for Fast Parallel Arithmetic , 1961 .

[9]  Nicholas C. Metropolis,et al.  Significance Arithmetic: Application to a Partial Differential Equation , 1977, IEEE Transactions on Computers.

[10]  Jerome T. Coonen,et al.  Ieee standard for binary floating-point arithmetic , 1985 .

[11]  Algirdas Avizienis,et al.  On a Flexible Implementation of Digital Computer Arithmetic , 1962, IFIP Congress.

[12]  Kishor S. Trivedi,et al.  Higher radix on-line division , 1978, 1978 IEEE 4th Symposium onomputer Arithmetic (ARITH).

[13]  Milos D. Ercegovac,et al.  Floating-point on-line arithmetic: Error analysis , 1981, 1981 IEEE 5th Symposium on Computer Arithmetic (ARITH).