Machine Learning-Aided Identification of Single Atom Alloy Catalysts

In metal catalytic design, there is a well-established linear scaling relationship between reaction and adsorption energies. However, owing to the challenges of performing experimental and/or compu...

[1]  Paul L. Rosin,et al.  Selection of the optimal parameter value for the Isomap algorithm , 2006, Pattern Recognit. Lett..

[2]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD 2000.

[3]  Somnath Datta,et al.  Informatics guided discovery of surface structure-chemistry relationships in catalytic nanoparticles. , 2014, The Journal of chemical physics.

[4]  Jeffrey Greeley,et al.  Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design. , 2016, Annual review of chemical and biomolecular engineering.

[5]  Luke E K Achenie,et al.  Machine-Learning-Augmented Chemisorption Model for CO2 Electroreduction Catalyst Screening. , 2015, The journal of physical chemistry letters.

[6]  J. Kitchin,et al.  Investigating the Reactivity of Single Atom Alloys Using Density Functional Theory , 2018, Topics in Catalysis.

[7]  Krishna Rajan,et al.  Mapping Chemical Selection Pathways for Designing Multicomponent Alloys: an informatics framework for materials design , 2015, Scientific Reports.

[8]  A. Miedema,et al.  The electronegativity parameter for transition metals: Heat of formation and charge transfer in alloys , 1973 .

[9]  Matthew T. Darby,et al.  Lonely Atoms with Special Gifts: Breaking Linear Scaling Relationships in Heterogeneous Catalysis with Single-Atom Alloys. , 2018, The journal of physical chemistry letters.

[10]  Matthew T. Darby,et al.  Elucidating the Stability and Reactivity of Surface Intermediates on Single-Atom Alloy Catalysts , 2018 .

[11]  E. A. Lewis,et al.  Isolated Metal Atom Geometries as a Strategy for Selective Heterogeneous Hydrogenations , 2012, Science.

[12]  Søren Dahl,et al.  The Brønsted-Evans-Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts , 2001 .

[13]  R. Jin,et al.  Shuttling single metal atom into and out of a metal nanoparticle , 2017, Nature Communications.

[14]  Thomas Bligaard,et al.  The nature of the active site in heterogeneous metal catalysis. , 2008, Chemical Society reviews.

[15]  J. Rossmeisl,et al.  Climbing the 3D Volcano for the Oxygen Reduction Reaction Using Porphyrin Motifs , 2018, ACS Sustainable Chemistry & Engineering.

[16]  Ryosuke Jinnouchi,et al.  Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm. , 2017, The journal of physical chemistry letters.

[17]  Núria López,et al.  Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals , 2019, Nature Communications.

[18]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[19]  E. Sykes,et al.  Atomic Scale Surface Structure of Pt/Cu(111) Surface Alloys , 2014 .

[20]  P. Sabatier,et al.  Hydrogénations et déshydrogénations par catalyse , 1911 .

[21]  Ichigaku Takigawa,et al.  Toward Effective Utilization of Methane: Machine Learning Prediction of Adsorption Energies on Metal Alloys , 2018 .

[22]  Osman G. Mamun,et al.  Prediction of Adsorption Energies for Chemical Species on Metal Catalyst Surfaces Using Machine Learning , 2018, The Journal of Physical Chemistry C.

[23]  M. Scheffler,et al.  Beyond Scaling Relations for the Description of Catalytic Materials , 2019, ACS Catalysis.

[24]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[25]  P. Villars,et al.  A three-dimensional structural stability diagram for 1011 binary AB2 intermetallic compounds: II , 1983 .

[26]  Christopher J. Bartel,et al.  Machine learning for heterogeneous catalyst design and discovery , 2018 .

[27]  Jianmin Lu,et al.  Single Atom Alloy Preparation and Applications in Heterogeneous Catalysis , 2019, Chinese Journal of Chemistry.

[28]  P. Villars,et al.  Three-dimensional structural stability diagrams for 648 binary AB3 and 389 binary A3B5 intermetallic compounds: III , 1984 .

[29]  Jens K. Nørskov,et al.  Electronic factors determining the reactivity of metal surfaces , 1995 .