Up-conversions in RE-doped Solids

As for other fiuorescence light emitters, rare-earth-doped solids usually follow the well known principle of the Stokes law which simply states that excitation photons are ar higher energy than emitted ones, or in other words that out put photon energy is weak, less than input photon energy. Such a principle is valid of course only when one ion system is considered.

[1]  Roger M. Macfarlane,et al.  Blue and green cw upconversion lasing in Er:YLiF4 , 1990 .

[2]  Yang Chen,et al.  LARGEST EIGENVALUE DISTRIBUTION IN THE DOUBLE SCALING LIMIT OF MATRIX MODELS: A COULOMB FLUID APPROACH , 1995, hep-th/9502123.

[3]  G. Garlick Infrared to visible light conversion , 1976 .

[4]  C. A. Millar,et al.  Upconversion pumped green lasing in erbium doped fluorozirconate fibre , 1991 .

[5]  R. E. Araujo,et al.  Diode pumped avalanche upconversion in Pr3+-doped fibers , 1993 .

[6]  J. Ohwaki,et al.  High‐efficiency infrared‐to‐visible upconversion of Er3+ in BaCl2 , 1993 .

[7]  Pelletier,et al.  Multiphoton excitations in neodymium chlorides. , 1987, Physical review. B, Condensed matter.

[8]  S. C. Rand,et al.  Ultraviolet sum-frequency generation utilizing optical pair interactions in solids☆ , 1982 .

[9]  L. Johnson,et al.  Energy Transfer Between Rare‐Earth Ions , 1966 .

[10]  N. Cockroft,et al.  Upconversion fluorescence spectroscopy of Er3+ pairs in CsCdBr3 a , 1989 .

[11]  Philippe Goldner,et al.  Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals , 1994 .

[12]  F. Auzel,et al.  Room-temperature photon avalanche up-conversion in an erbium-doped fluoride fibre , 1995 .

[13]  E. Heumann,et al.  High-power continuous-wave upconversion fiber laser at room temperature. , 1997, Optics letters.

[14]  E. Heumann,et al.  Green Er(3+):YLiF(4) upconversion laser at 551nm with Yb(3+) codoping: a novel pumping scheme. , 1997, Optics letters.

[15]  A. Meijerink,et al.  Visible quantum cutting in LiGdF4:Eu3+ through downconversion , 1999, Science.

[16]  W. Lenth,et al.  Violet cw neodymium upconversion laser , 1988 .

[17]  A. Kueny,et al.  Infrared-to-ultraviolet photon-avalanche-pumped upconversion in Tm:LiYF 4 , 1993 .

[18]  H. G. Danielmeyer,et al.  Fluorescence quenching in Nd:YAG , 1973 .

[19]  F. Auzel,et al.  Multifrequency room‐temperature continuous diode and Ar* laser‐pumped Er3+ laser emission between 2.66 and 2.85 μm , 1989 .

[20]  J. Axe,et al.  Fluorescence and Energy Transfer in Y2O3:Eu3+ , 1964 .

[21]  H. G. Danielmeyer,et al.  Energy transfer and the complete level system of NdUP , 1973 .

[22]  Photon avalanche upconversion in Er/sup 3+/:YAlO/sub 3/ , 1995 .

[23]  T. Kushida Energy Transfer and Cooperative Optical Transitions in Rare-Earth Doped Inorganic Materials. I. Transition Probability Calculation , 1973 .

[24]  P. Goldner,et al.  Cooperative luminescence in ytterbium-doped CsCdBr3 , 1997 .

[26]  R. Macfarlane,et al.  Excitation mechanisms for upconversion lasers , 1990 .

[27]  D. Pecile,et al.  Comparison and efficiency of materials for summation of photons assisted by energy transfer , 1973 .

[28]  P. Goldner,et al.  Infrared to blue upconversion fluorescence in heavy metal fluoride glass codoped with Tm3+ and Yb3+ ions , 1994 .

[29]  F. Auzel,et al.  Emission properties, oscillator strengths and laser parameters of Er3+ in LiYF4 at 2.7 μm , 1991 .

[30]  F. Auzel L'auto-extinction de Nd3+ : Son mecanisme fondamental et un critere predictif simple pour les materiaux minilaser , 1979 .

[31]  Sylvain Girard,et al.  10 kHz continuously tunable Ce:LiLuF₄ laser , 1999 .

[32]  A. Kueny,et al.  The photon avalanche in rare-earth crystals , 1990 .

[33]  M. J. Suscavage,et al.  Efficient frequency upconversion of Tm3+ ions in Yb3+ doped barium‐thorium fluoride glass , 1988 .

[34]  William P. Risk,et al.  A 551-nm diode laser pumped upconversion laser , 1989, Annual Meeting Optical Society of America.

[35]  R. J. Woodward,et al.  Experiments on Er3+ in SrF2. III. Coupled‐Ion Effects , 1969 .

[36]  J. Leite,et al.  Lineshape of cooperative two-photon absorption by atom pairs in solids , 1980 .

[37]  Lilia Coronato Courrol,et al.  Excited state absorption and looping mechanism in Yb3+-Tm3+- Ho3+-doped Gd3Ga5O12 garnet , 1994 .

[38]  H. Poignant,et al.  Room temperature CW tunable green upconversion holmium fibre laser , 1990 .

[39]  F. Auzel Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions , 1976 .

[40]  Y. H. Chen,et al.  Multiphonon pumping in Er3+ ZBLAN bulk and fibre, the first step for the photon avalanche process , 1995 .

[41]  A. Schawlow,et al.  Cooperative energy transfer among Pr3+ ions in LaF3 , 1984 .

[42]  F. Micheron,et al.  Medical x-ray imaging in infrared to visible upconverting materials , 1990 .

[43]  E. Heumann,et al.  Green up‐conversion laser emission in Er‐doped crystals at room temperature , 1993 .

[44]  D. L. Wood,et al.  Self-Absorption and Trapping of Sharp-Line Resonance Radiation in Ruby , 1959 .

[45]  F. Auzel Multiphonon Processes, Cross-Relaxation and Up-Conversion in Ion-Activated Solids, Exemplified By Minilaser Materials , 1980 .

[46]  Hehlen,et al.  Cooperative bistability in dense, excited atomic systems. , 1994, Physical review letters.

[47]  S. G. Grubb,et al.  CW room-temperature blue upconversion fibre laser , 1992 .

[48]  J. Ohwaki,et al.  1.3 μm to visible upconversion in Dy3+‐ and Er3+‐codoped BaCl2 phosphor , 1994 .

[49]  D. L. Dexter,et al.  Cooperative and Stepwise Excitation of Luminescence: Trivalent Rare-Earth Ions in Yb 3 + -Sensitized Crystals , 1970 .

[50]  Marvin J. Weber,et al.  Luminescence Decay by Energy Migration and Transfer: Observation of Diffusion-Limited Relaxation , 1971 .

[51]  W. Yen,et al.  Observation of avalanche-like behavior in Tm3+ : Y2O3 , 1994 .

[52]  E. Heumann,et al.  Green upconversion continuous wave Er3+:LiYF4 laser at room temperature , 1994 .

[53]  Jay S. Chivian,et al.  The photon avalanche: A new phenomenon in Pr3+‐based infrared quantum counters , 1979 .

[54]  N. Krasutsky 10‐μm samarium based quantum counter , 1983 .

[55]  T. Komukai,et al.  Efficient upconversion pumping at 1.064 mu m Tm/sup 3+/-doped fluoride fibre laser operating around 1.47 mu m , 1992 .

[56]  M. Inokuti,et al.  Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence , 1965 .

[57]  F. Auzel,et al.  Materials and devices using double-pumped-phosphors with energy transfer , 1973 .

[58]  Baldassare Di Bartolo,et al.  Optical properties of ions in solids , 1975 .

[59]  F. Auzel Rare Earth Doped Vitroceramics: New, Efficient, Blue and Green Emitting Materials for Infrared Up‐Conversion , 1975 .

[60]  G. F. Sá,et al.  1.5 μm high detectivity quantum counter by energy transfers in diode pumped glassceramics , 1985 .

[61]  T. Kushida,et al.  PHONON-ASSISTED ENERGY TRANSFER BETWEEN TRIVALENT RARE EARTH IONS. , 1972 .

[62]  Eiichiro Nakazawa,et al.  Cooperative Luminescence in YbPO 4 , 1970 .

[63]  H. Güdel,et al.  Cooperative optical bistability in the dimer system Cs3Y2Br9:10% Yb3+ , 1996 .

[64]  M. Stavola,et al.  Energy transfer and two-center optical transitions involving rare-earth and O H − impurities in condensed matter , 1979 .

[65]  J. Adam,et al.  Avalanche upconversion in Tm3+-doped BIGaZYTZr glass , 1995 .

[66]  D B Ostrowsky,et al.  Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers. , 1995, Optics letters.

[67]  David N. Payne,et al.  Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 μm , 1986 .

[68]  M. Genet,et al.  Up conversion process in U4+-doped ThBr4 and ThCl4 , 1986 .

[69]  A. Tverjanovich,et al.  Up-conversion fluorescence in Er-doped chalcogenide glasses based on GeS2–Ga2S3 system , 2001 .

[70]  F. W. Ostermayer,et al.  Cooperative Energy Transfer from Yb3+ to Tb3+ in YF3 , 1970 .

[71]  B. Henderson,et al.  Optical spectroscopy of inorganic solids , 1989 .

[72]  T. M. Murina,et al.  Steady-state emission from a Y3Al5O12:Er3+ laser (λ =2.94 μ, T=300°K) , 1983 .

[73]  L. Johnson,et al.  Infrared‐Pumped Visible Laser , 1971 .

[74]  P. May,et al.  Excitation avalanche in Ni2+-doped CsCdCl3 , 1992 .

[75]  H. Poignant,et al.  Blue upconversion fluorozirconate fibre laser , 1990 .

[76]  W. Weg,et al.  Saturation effects of cathodoluminescence in rare‐earth activated epitaxial Y3Al5O12 layers , 1981 .

[77]  M. Doroshenko,et al.  Cooperative nonradiative cross-relaxation in crystals of La(1−x)CexF3 solid solutions , 2000 .

[78]  F. Auzel,et al.  Upconversion processes in coupled ion systems , 1990 .

[79]  Philippe Goldner,et al.  Cooperative luminescence as a probe of clustering in Yb3+ doped glasses , 2000 .

[80]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[81]  J. C. Wright Up-conversion and excited state energy transfer in rare-earth doped materials , 1976 .

[82]  G. Boulon,et al.  Kinetics of transfer and back transfer in thulium-holmium-doped Gd3Ga5O12(Ca, Zr) garnet , 1993 .

[83]  M. Monerie,et al.  Modeling of pair-induced quenching in erbium-doped silicate fibers , 1993 .

[84]  J. Heber Intrinsic optical bistability of pairs of two-level ions coupled by nonelectromagnetic interaction , 1987 .

[85]  S. A. Pollack,et al.  Ion‐pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals , 1988 .

[86]  F. Auzel Spectral Narrowing of Excitation Spectra in N-Photons Up-Conversion Processes by Energy Transfers , 1984, International Conference on Luminescence - 1984.

[87]  R. Bonifacio Dissipative Systems in Quantum Optics , 1982 .

[88]  Y. Guyot,et al.  4f2 to 4f5d excited state absorption in Pr3+-doped crystals , 2001 .

[89]  J. F. Sarver,et al.  Infrared Excitation Processes for the Visible Luminescence of Er 3+ , Ho 3+ , and Tm 3+ in Yb 3+ -Sensitized Rare-Earth Trifluorides , 1969 .

[90]  J. Vial,et al.  Up-conversion studied by selective time resolved excitation techniques in Pr3+ : LaF3 , 1979 .

[91]  D. M. Leeuw,et al.  Method for the analysis of saturation effects of cathodoluminescence in phosphors; applied to Zn2SiO4:Mn and Y3Al5O12:Tb , 1983 .

[92]  F. Auzel,et al.  Room temperature photon avalanche up-conversion in Er-doped ZBLAN glass , 1994 .

[93]  Lilia Coronato Courrol,et al.  Looping mechanism in Yb3+-Tm3+-Ho3+ doped Gd3Ga5O12 garnet , 1994 .

[94]  Philippe Goldner,et al.  Towards rare-earth clustering control in doped glasses , 2001 .

[95]  P. Goldner,et al.  Photon avalanche fluorescence and lasers , 1996 .

[96]  R. Macfarlane,et al.  Spectroscopy of solids containing rare earth ions , 1987 .

[97]  R. S. Quimby,et al.  Efficient frequency up-conversion via energy transfer in fluoride glasses , 1987 .

[98]  B. Jaskorzynska,et al.  Concentration-dependent upconversion in Er/sup 3+/-doped fiber amplifiers: Experiments and modeling , 1991, IEEE Photonics Technology Letters.

[99]  A. Tvarusko Measurement of Current Distribution on Wire , 1974 .

[100]  M. Chamarro,et al.  Infrared to visible upconversion of Er3+ ions in Yb3+ doped fluorohafnate glasses , 1990 .

[101]  Y. H. Chen,et al.  Spatial domains in avalanche pumped Er:ZBLAN fibre , 1994 .

[102]  Ralph H. Page,et al.  Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium , 1997 .

[103]  F. Auzel,et al.  F4 Second harmonic generation in rare-earth ion doped nonlinear crystal , 1976 .

[104]  Y. H. Chen,et al.  Photon avalanche in Er:ZBLAN fibre pumped at 690 nm , 1994 .

[105]  F. Auzel,et al.  Calcul des probabilités des transferts d'énergie entre ions de terres rares. I. une méthode de calcul unifiée utilisant des méthodes tensorielles standard , 1978 .

[106]  Junichi Ohwaki,et al.  New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion , 1993 .

[107]  P. Goldner,et al.  Spatial domains in avalanche-pumped erbium-doped fluoride fiber , 1998 .

[108]  C. Pedrini,et al.  Excited-state absorption and energy transfer in Er3+ doped LiYF4 , 1986 .

[109]  Hajime Yamamoto,et al.  Energy transfer processes in Er3+‐ and Yb3+‐doped infrared upconversion materials , 1995 .

[110]  D. D. O'Sullivan,et al.  HIGH‐CURRENT‐DENSITY INJECTION ELECTROLUMINESCENCE IN CADMIUM SULFIDE , 1965 .

[111]  R. Macfarlane,et al.  A Three-Color, Solid-State, Three-Dimensional Display , 1996, Science.

[112]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[113]  A. Kueny,et al.  Photon avalanche upconversion laser at 644 nm , 1990 .

[114]  E. Mix,et al.  Avalanche up-conversion processes in Pr, Yb-doped materials , 2000 .

[115]  M. Yokota,et al.  Effects of Diffusion on Energy Transfer by Resonance , 1967 .

[116]  F. Urbach,et al.  Introduction to the Luminescence of Solids , 1950 .

[117]  R. Scheps Er/sup 3+/:YAlO/sub 3/ upconversion laser , 1994 .

[118]  F. Auzel,et al.  Photon avalanche luminescence of Er3+ ions in LiYF4 crystal , 1995 .

[119]  N. Bloembergen,et al.  Solid State Infrared Quantum Counters , 1959 .