Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier

A reversible logic has application in quantum computing. A reversible logic design needs resources such as ancilla and garbage qubits to reconfigure circuit functions or gate functions. The removal of garbage qubits and ancilla qubits are essential in designing an efficient quantum circuit. In the literature, there are multiple designs that have been proposed for a reversible multiplication operation. A multiplication hardware is essential for the circuit design of quantum algorithms, quantum cryptanalysis, and digital signal processing applications. The existing designs of reversible quantum integer multipliers suffer from redundant garbage qubits. In this work, we propose a reversible logic based, garbage-free and ancilla qubit optimized design of a quantum integer multiplier. The proposed quantum integer multiplier utilizes a novel add and rotate methodology that is specially suitable for a reversible computing paradigm. The proposed design methodology is the modified version of a conventional shift and add method. The proposed design of the quantum integer multiplier incorporates add or no operation based on multiplier qubits and followed by a rotate right operation. The proposed design of the quantum integer multiplier produces zero garbage qubits and shows an improvement ranging from 60 to 90 % in ancilla qubits count over the existing work on reversible quantum integer multipliers.

[1]  Dmitri Maslov,et al.  Reversible Circuit Optimization Via Leaving the Boolean Domain , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[2]  Hamid R. Arabnia,et al.  A Reversible Programmable Logic Array (RPLA) Using Fredkin and Feynman Gates for Industrial Electronics and Applications , 2006, CDES.

[3]  Gerhard W. Dueck,et al.  Reversible cascades with minimal garbage , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[4]  Hamid R. Arabnia,et al.  A Reversible Version of 4 x 4 Bit Array Multiplier With Minimum Gates and Garbage Outputs , 2005, ESA.

[5]  Himanshu Thapliyal,et al.  Novel Reversible Multiplier Architecture Using Reversible TSG Gate , 2006, IEEE International Conference on Computer Systems and Applications, 2006..

[6]  John P. Hayes,et al.  Data structures and algorithms for simplifying reversible circuits , 2006, JETC.

[7]  Celina M. H. de Figueiredo,et al.  Reversible Karatsuba's Algorithm , 2006, J. Univers. Comput. Sci..

[8]  Yasuhiro Takahashi,et al.  Quantum addition circuits and unbounded fan-out , 2009, Quantum Inf. Comput..

[9]  Gerhard W. Dueck,et al.  Reversible Logic Synthesis , 2020, Reversible and DNA Computing.

[10]  Keivan Navi,et al.  Ultra-area-efficient reversible multiplier , 2012, Microelectron. J..

[11]  DiVincenzo,et al.  Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[12]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[13]  Hamid R. Arabnia,et al.  Reversible Logic Synthesis of Half, Full and Parallel Subtractors , 2005, ESA.

[14]  Dmitri Maslov,et al.  A Study of Optimal 4-Bit Reversible Toffoli Circuits and Their Synthesis , 2011, IEEE Transactions on Computers.

[15]  Holger Bock Axelsen,et al.  Reversible arithmetic logic unit for quantum arithmetic , 2010 .

[16]  Hamid R. Arabnia,et al.  Reduced Area Low Power High Throughput BCD Adders for IEEE 754r Format , 2006, ArXiv.

[17]  N. Ranganathan,et al.  Reversible logic based multiplication computing unit using binary tree data structure , 2015, The Journal of Supercomputing.

[18]  N. Margolus Parallel Quantum Computation ∗ , 1990 .

[19]  Biswajit Das,et al.  An Approach for Designing an Optimized Reversible Parallel Multiplier by Reversible Gates , 2015 .

[20]  R BhagyalakshmiH,et al.  Optimized Multiplier Using Reversible Multicontrol Input Toffoli Gates , 2012, VLSIC 2012.

[21]  R. Gillan New Editor-in-Chief for Journal of Physics A: Mathematical and Theoretical , 2014 .

[22]  Rodney Van Meter,et al.  On the Effect of Quantum Interaction Distance on Quantum Addition Circuits , 2008, JETC.

[23]  H. V. Jayashree,et al.  Progress in Reversible Processor Design: A Novel Methodology for Reversible Carry Look-Ahead Adder , 2013, Trans. Comput. Sci..

[24]  Arindam Banerjee,et al.  The Design of Reversible Multiplier Using Ancient Indian Mathematics , 2013, 2013 International Symposium on Electronic System Design.

[25]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[26]  Morteza Saheb Zamani,et al.  Reversible circuit synthesis using a cycle-based approach , 2010, JETC.

[27]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[28]  Dmitri Maslov,et al.  On the advantages of using relative phase Toffolis with an application to multiple control Toffoli optimization , 2015, ArXiv.

[29]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..

[30]  Ahsan Raja Chowdhury,et al.  On the Analysis of Reversible Booth's Multiplier , 2015, 2015 28th International Conference on VLSI Design.

[31]  Yasuhiro Takahashi,et al.  A linear-size quantum circuit for addition with no ancillary qubits , 2005, Quantum Inf. Comput..

[32]  Guowu Yang,et al.  Bi-Directional Synthesis of 4-Bit Reversible Circuits , 2008, Comput. J..

[33]  Hamid R. Arabnia,et al.  Efficient Reversible Logic Design of BCD Subtractors , 2009, Trans. Comput. Sci..

[34]  N. Ranganathan,et al.  Design of efficient reversible logic-based binary and BCD adder circuits , 2013, JETC.

[35]  Guowu Yang,et al.  Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[36]  Jian Cao,et al.  Transistor realization of reversible "ZS" series gates and reversible array multiplier , 2011, Microelectron. J..

[37]  K. N. Muralidhara,et al.  Design of Efficient Reversible Multiplier , 2012, ACITY.

[38]  Hamid R. Arabnia,et al.  Combined Integer and Floating Point Multiplication Architecture(CIFM) for FPGAs and Its Reversible Logic Implementation , 2006, 2006 49th IEEE International Midwest Symposium on Circuits and Systems.

[39]  Yasuhiro Takahashi,et al.  Quantum Arithmetic Circuits: A Survey , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[40]  Hamid R. Arabnia,et al.  A Need of Quantum Computing: Reversible Logic Synthesis of Parallel Binary Adder-Subtractor , 2005, ESA.