Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification

Lasers provide the ability to accurately deliver large amounts of energy into confined regions of a material in order to achieve a desired response. For opaque materials, this energy is absorbed near the surface, modifying surface chemistry, crystal structure, and/or multiscale morphology without altering the bulk. This chapter covers a brief introduction to the fundamental principles governing laser propagation and absorption as well as the resulting material responses. We then highlight two case studies of improving efficiency in photovoltaic and optoelectronic devices as well as optimizing cell-surface interactions in biological interfaces.

[1]  S. Heinemann Computer generated beam shaping and focusing optical elements for laser material processing , 1995 .

[2]  M. Varela,et al.  Whiskerlike structure growth on silicon exposed to ArF excimer laser irradiation , 1996 .

[3]  D. Brunette,et al.  Effects of titanium-coated micromachined grooved substrata on orienting layers of osteoblast-like cells and collagen fibers in culture. , 2004, Journal of biomedical materials research. Part A.

[4]  Eric Mazur,et al.  Near-unity below-band-gap absorption by microstructured silicon , 2001 .

[5]  Peter Michael Baumgart,et al.  A new laser texturing technique for high performance magnetic disk drives , 1995 .

[6]  D. Brunette,et al.  The effects of implant surface topography on the behavior of cells. , 1988, The International journal of oral & maxillofacial implants.

[7]  Bernhard Lamprecht,et al.  Near-field observation of surface plasmon polariton propagation on thin metal stripes , 2001 .

[8]  G. Mourou,et al.  Laser ablation and micromachining with ultrashort laser pulses , 1997 .

[9]  P. Goglia,et al.  Laser texturing for low‐flying‐height media , 1991 .

[10]  E. Campbell,et al.  Coulomb explosion in ultrashort pulsed laser ablation of Al 2 O 3 , 2000 .

[11]  Marcus Textor,et al.  Titanium in Medicine : material science, surface science, engineering, biological responses and medical applications , 2001 .

[12]  T. C. Lei,et al.  The effects of heat treatment on microstructure and erosion properties of laser surface-clad Ni-base alloy , 1999 .

[13]  Jeffrey E. Cotter,et al.  Optical and electrical properties of laser texturing for high‐efficiency solar cells , 2006 .

[14]  K Nemoto,et al.  Optimum control of the laser beam intensity profile with a deformable mirror. , 1997, Applied optics.

[15]  A. Chikouche,et al.  Design and simulation of antireflection coating systems for optoelectronic devices : Application to silicon solar cells , 1998 .

[16]  Jeff F. Young,et al.  Laser-induced periodic surface structure. I. Theory , 1983 .

[17]  Weidong Zhou,et al.  Microstructured surface design for omnidirectional antireflection coatings on solar cells , 2007 .

[18]  Eric Mazur,et al.  Role of the Background Gas in the Morphology and Optical Properties of Laser-Microstructured Silicon , 2005 .

[19]  M. Obara,et al.  Heat effects of metals ablated with femtosecond laser pulses , 2002 .

[20]  C. Fotakis,et al.  Tailoring the wetting response of silicon surfaces via fs laser structuring , 2008 .

[21]  Izhak Etsion,et al.  Improving Tribological Performance of Mechanical Components by Laser Surface Texturing , 2004 .

[22]  Martin A. Green,et al.  22.7% efficient silicon photovoltaic modules with textured front surface , 1999 .

[23]  R. Misra,et al.  Biomaterials , 2008 .

[24]  Tsao,et al.  Solute trapping: Comparison of theory with experiment. , 1986, Physical review letters.

[25]  W. Saltzman,et al.  Biomaterials with hierarchically defined micro- and nanoscale structure. , 2004, Biomaterials.

[26]  Giancarlo Ruocco,et al.  Shocks in nonlocal media. , 2007, Physical review letters.

[27]  John C. Ion,et al.  Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application , 2005 .

[28]  A Curtis,et al.  Topographical control of cells. , 1997, Biomaterials.

[29]  D. Puleo,et al.  Understanding and controlling the bone-implant interface. , 1999, Biomaterials.

[30]  G. A. Shafeev,et al.  Formation of conic microstructures upon pulsed laser evaporation of solids , 2000 .

[31]  R. Srinivasan,et al.  Laser ablation of organic polymers: Microscopic models for photochemical and thermal processes , 1985 .

[32]  V. Craciun,et al.  Investigation of pulsed non-melt laser annealing on the film properties and performance of Cu(In,Ga)Se2 solar cells , 2005 .

[33]  Neelesh A Patankar,et al.  Mimicking the lotus effect: influence of double roughness structures and slender pillars. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[34]  V. Berger,et al.  Nonlinear Photonic Crystals , 1998 .

[35]  Jason D. Fowlkes,et al.  Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6 , 1999 .

[36]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[37]  Stuart Edwardson,et al.  Nanoparticle formation by the debris produced by femtosecond laser ablation of silicon in ambient air , 2008 .

[38]  Mori,et al.  Electron-optical-phonon interaction in single and double heterostructures. , 1989, Physical review. B, Condensed matter.

[39]  Eric Mazur,et al.  Enhancing near-infrared avalanche photodiode performance by femtosecond laser microstructuring. , 2006, Applied optics.

[40]  Eric Audouard,et al.  Programmable focal spot shaping of amplified femtosecond laser pulses. , 2005, Optics letters.

[41]  K. Anselme,et al.  Human osteoblast adhesion on titanium alloy, stainless steel, glass and plastic substrates with same surface topography , 1999, Journal of materials science. Materials in medicine.

[42]  U. Joos,et al.  Basic reactions of osteoblasts on structured material surfaces. , 2005, European cells & materials.

[43]  Shuyan Zhang,et al.  Ultrashort laser pulse beam shaping. , 2003, Applied optics.

[44]  J. Bronzino,et al.  Biomaterials : Principles and Applications , 2002 .

[45]  J. M. D. Coey,et al.  Pulsed laser deposition of thin films of ( , 1996 .

[46]  Koji Sugioka,et al.  Photon Processing in Microelectronics and Photonics , 2002 .

[47]  B. A. Wilcox,et al.  Laser shock hardening of weld zones in aluminum alloys , 1977 .

[48]  Craig B. Arnold,et al.  Nano-second UV laser processed micro-grooves on Ti6Al4V for biomedical applications , 2009 .

[49]  Eric Mazur,et al.  Chalcogen doping of silicon via intense femtosecond-laser irradiation , 2007 .

[50]  D. Georgiev,et al.  Single-pulse excimer laser nanostructuring of silicon: A heat transfer problem and surface morphology , 2008 .

[51]  R. Blossey Self-cleaning surfaces — virtual realities , 2003, Nature materials.

[52]  M. Birnbaum Semiconductor Surface Damage Produced by Ruby Lasers , 1965 .

[53]  G. A. Shafeev,et al.  Formation of conical microstructures upon laser evaporation of solids , 2001 .

[54]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[55]  E. Mazur,et al.  MICROSTRUCTURING OF SILICON WITH FEMTOSECOND LASER PULSES , 1998 .

[56]  Costas Fotakis,et al.  Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation , 2006, Nanotechnology.

[57]  D. Hammer,et al.  A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. , 1993, Biophysical journal.

[58]  N. Dahotre Lasers in surface engineering , 1998 .

[59]  Martin A. Green,et al.  16. 7% efficient, laser textured, buried contact polycrystalline silicon solar cell , 1989 .

[60]  Julie Gold,et al.  An in vivo study of bone response to implants topographically modified by laser micromachining. , 2003, Biomaterials.

[61]  R. Russo,et al.  Preferential Vaporization during Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy , 1998 .

[62]  Eric Mazur,et al.  Silicon Surface Morphologies after Femtosecond Laser Irradiation , 2006 .

[63]  P. Campbell,et al.  Enhancement of light absorption from randomizing and geometric textures , 1993 .

[64]  Jean-Pierre Bernard,et al.  The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: early results from clinical trials on ITI SLA implants. , 2002, Clinical oral implants research.

[65]  A F von Recum,et al.  Quantitative analysis of cell proliferation and orientation on substrata with uniform parallel surface micro-grooves. , 1996, Biomaterials.

[66]  P. Siffert,et al.  Time-resolved reflectivity and melting depth measurements using pulsed ruby laser on silicon , 1985 .

[67]  S. Nolte,et al.  Beam delivery of femtosecond laser radiation by diffractive optical elements , 1998 .

[68]  E. Hunziker,et al.  Effect of surface topology on the osseointegration of implant materials in trabecular bone. , 1995, Journal of biomedical materials research.

[69]  Leonid V. Zhigilei,et al.  MOLECULAR DYNAMICS MODEL FOR LASER ABLATION AND DESORPTION OF ORGANIC SOLIDS , 1997 .

[70]  W. Kautek,et al.  Femtosecond laser ablation of silicon–modification thresholds and morphology , 2002 .

[71]  S. Borneis,et al.  TFT Annealing with Excimer Laser. Technology and Market Outlook , 1998 .

[72]  Buddy D. Ratner,et al.  Biomaterials Science: An Introduction to Materials in Medicine , 1996 .

[73]  C. Liang,et al.  Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses. , 2008, Optics express.

[74]  M. Allmen,et al.  Laser-beam interactions with materials : physical principles and applications , 1987 .

[75]  John Ion,et al.  Laser processing of engineering materials , 2002 .

[76]  C. Arnold,et al.  Parameter-free test of alloy dendrite-growth theory , 1999 .

[77]  J. Gilman,et al.  Nanotechnology , 2001 .

[78]  Werner Zapka,et al.  Laser‐cleaning techniques for removal of surface particulates , 1992 .

[79]  Stuart A. Boden,et al.  Tunable reflection minima of nanostructured antireflective surfaces , 2008 .

[80]  Shaochen Chen,et al.  Melting and Surface Deformation in Pulsed Laser Surface Micromodification of Ni-P Disks , 2000 .

[81]  John E. Sipe,et al.  Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon , 1982 .

[82]  Miko Elwenspoek,et al.  The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control , 1995 .

[83]  Euan McLeod,et al.  Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens. , 2006, Optics letters.

[84]  J. W. Bartha,et al.  Temperature dependence of the reflectivity of silicon with surface oxide at wavelengths of 633 and 1047 nm , 1999 .

[85]  Ruediger Grunwald,et al.  Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO , 2009 .

[86]  H C van der Mei,et al.  Influence of substratum wettability on the strength of adhesion of human fibroblasts. , 1992, Biomaterials.

[87]  T. Machida,et al.  Polycrystalline silicon solar cells with V-grooved surface , 1994 .

[88]  Anthony J. Pedraza,et al.  Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres , 2000 .

[89]  Liang Hao,et al.  On the correlation between Nd:YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy , 2006 .

[90]  Chunlei Guo,et al.  Femtosecond laser blackening of platinum , 2008 .

[91]  C. Ranawat,et al.  Review Article: Osteolysis After Total Knee Arthroplasty , 2007 .

[92]  E S Grood,et al.  Alignment and proliferation of MC3T3-E1 osteoblasts in microgrooved silicone substrata subjected to cyclic stretching. , 2000, Journal of biomechanics.

[93]  M. Allmen Laser-beam interactions with materials , 1987 .

[94]  I. Etsion State of the art in Laser Surface Texturing , 2004 .

[95]  D. Ingber,et al.  Mechanotransduction across the cell surface and through the cytoskeleton , 1993 .

[96]  Gianluigi A. Botton,et al.  Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation , 2008 .

[97]  Xianfan Xu,et al.  Thermoelastic wave induced by pulsed laser heating , 2001 .

[98]  Peter Michael Baumgart,et al.  Marangoni Mechanism in Pulsed Laser Texturing of Magnetic Disk Substrates , 1997 .

[99]  Eric Mazur,et al.  Comparison of Structure and Properties of Femtosecond and Nanosecond Laser-Structured Silicon , 2004 .

[100]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[101]  M. Hutley,et al.  The Optical Properties of 'Moth Eye' Antireflection Surfaces , 1982 .

[102]  S. Jeoung,et al.  Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification. , 2008, Optics express.

[103]  G. A. Shafeev,et al.  Arrays of 3D micro-columns generated by laser ablation of Ta and steel: modelling of a black body emitter , 2004 .

[104]  Raghuvir Singh,et al.  Laser surface processing of Ti6Al4V in gaseous nitrogen: corrosion performance in physiological solution , 2008, Journal of materials science. Materials in medicine.

[105]  David L. Bourell,et al.  Selective laser sintering of metals and ceramics , 1992 .

[106]  Mengyan Shen,et al.  Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. , 2005, Optics letters.

[107]  W. Soboyejo,et al.  An investigation of the initial attachment and orientation of osteoblast-like cells on laser grooved Ti-6Al-4V surfaces , 2009 .

[108]  K. Anselme,et al.  Osteoblast adhesion on biomaterials. , 2000, Biomaterials.

[109]  Fred M. Dickey,et al.  Laser beam shaping : theory and techniques , 2000 .

[110]  A F von Recum,et al.  Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces. , 1998, Journal of biomedical materials research.

[111]  W. Soboyejo,et al.  Interactions between MC3T3-E1 cells and textured Ti6Al4V surfaces. , 2002, Journal of biomedical materials research.

[112]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[113]  Mengyan Shen,et al.  Femtosecond Laser-Induced Formation Of Submicrometer Spikes On Silicon In Water , 2004 .

[114]  Louis A. Romero,et al.  Lossless laser beam shaping , 1996 .

[115]  Ph. Delaporte,et al.  Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication , 2008 .

[116]  D. Bäuerle Laser Processing and Chemistry , 1996 .

[117]  B. Rech,et al.  Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells , 1999 .

[118]  Darong Chen,et al.  Investigation on hydrophobicity of lotus leaf: Experiment and theory , 2009 .

[119]  S. Eggins,et al.  Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation , 2004 .

[120]  Philippe M. Fauchet,et al.  Growth of spontaneous periodic surface structures on solids during laser illumination , 1982 .

[121]  A. Vorobyev,et al.  Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals , 2008 .

[122]  Narendra B. Dahotre,et al.  Review paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering , 2005, Journal of biomaterials applications.

[123]  L. A. Dobrzański,et al.  Laser surface treatment of multicrystalline silicon for enhancing optical properties , 2008 .

[124]  James S. Im,et al.  Controlled Super‐Lateral Growth of Si Films for Microstructural Manipulation and Optimization , 1998 .

[125]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[126]  C J Murphy,et al.  Effects of synthetic micro- and nano-structured surfaces on cell behavior. , 1999, Biomaterials.

[127]  Nadezhda M. Bulgakova,et al.  Pulsed laser ablation of solids: transition from normal vaporization to phase explosion , 2001 .