Estimators of the multiple correlation coefficient: Local robustness and confidence intervals
暂无分享,去创建一个
[1] V. Yohai,et al. High Breakdown-Point Estimates of Regression by Means of the Minimization of an Efficient Scale , 1988 .
[2] John B. Willett,et al. Another Cautionary Note about R 2: Its Use in Weighted Least-Squares Regression Analysis , 1988 .
[3] Rory A. Fisher,et al. The general sampling distribution of the multiple correlation coefficient , 1928 .
[4] Peter J. Rousseeuw,et al. Robust regression and outlier detection , 1987 .
[5] V. Yohai. HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .
[6] Catherine Dehon,et al. Analyse canonique basée sur des estimateurs robustes de la matrice de covariance , 2002 .
[7] Werner A. Stahel,et al. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[8] Richard Anderson-Sprecher,et al. Model Comparisons and R 2 , 1994 .
[9] Joseph W. McKean,et al. Coefficients of determination for least absolute deviation analysis , 1987 .
[10] V. Yohai,et al. Optimal locally robust M-estimates of regression , 1997 .
[11] M. Romanazzi. Influence in canonical correlation analysis , 1992 .
[12] Peter J. Rousseeuw,et al. ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .
[13] Xuming He,et al. Bounded Influence and High Breakdown Point Testing Procedures in Linear Models , 1994 .
[14] P. Rousseeuw. Least Median of Squares Regression , 1984 .
[15] T. O. Kvålseth. Cautionary Note about R 2 , 1985 .