Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion

We discuss the arbitrary polynomial chaos (aPC), which has been subject of research in a few recent theoretical papers. Like all polynomial chaos expansion techniques, aPC approximates the dependence of simulation model output on model parameters by expansion in an orthogonal polynomial basis. The aPC generalizes chaos expansion techniques towards arbitrary distributions with arbitrary probability measures, which can be either discrete, continuous, or discretized continuous and can be specified either analytically (as probability density/cumulative distribution functions), numerically as histogram or as raw data sets. We show that the aPC at finite expansion order only demands the existence of a finite number of moments and does not require the complete knowledge or even existence of a probability density function. This avoids the necessity to assign parametric probability distributions that are not sufficiently supported by limited available data. Alternatively, it allows modellers to choose freely of technical constraints the shapes of their statistical assumptions. Our key idea is to align the complexity level and order of analysis with the reliability and detail level of statistical information on the input parameters. We provide conditions for existence and clarify the relation of the aPC to statistical moments of model parameters. We test the performance of the aPC with diverse statistical distributions and with raw data. In these exemplary test cases, we illustrate the convergence with increasing expansion order and, for the first time, with increasing reliability level of statistical input information. Our results indicate that the aPC shows an exponential convergence rate and converges faster than classical polynomial chaos expansion techniques.

[1]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[2]  S. Winterstein Nonlinear Vibration Models for Extremes and Fatigue , 1988 .

[3]  R. E. Wheeler Statistical distributions , 1983, APLQ.

[4]  A. Kiureghian,et al.  Reliability analysis of contaminant transport in saturated porous media , 1994 .

[5]  M. Evans Statistical Distributions , 2000 .

[6]  B. Lindsay On the Determinants of Moment Matrices , 1989 .

[7]  Franz S. Hover,et al.  Uncertainty quantification in simulations of power systems: Multi-element polynomial chaos methods , 2010, Reliab. Eng. Syst. Saf..

[8]  George Em Karniadakis,et al.  Error Control in Multi-Element Generalized Polynomial Chaos Methodfor EllipticProblemswith Random Coefficients , 2009 .

[9]  F. Maltz,et al.  Variance reduction in Monte Carlo computations using multi-dimensional hermite polynomials , 1979 .

[10]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[11]  M. Stone Applications of the theory of Boolean rings to general topology , 1937 .

[12]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[13]  J. Cooper TOTAL POSITIVITY, VOL. I , 1970 .

[14]  Rainer Helmig,et al.  An integrative approach to robust design and probabilistic risk assessment for CO2 storage in geological formations , 2011 .

[15]  Jon C. Helton,et al.  Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems , 2002 .

[16]  Philip John Binning,et al.  Brine migration resulting from CO2 injection into saline aquifers – An approach to risk estimation including various levels of uncertainty , 2012 .

[17]  Liangsheng Shi,et al.  Probabilistic collocation method for unconfined flow in heterogeneous media. , 2009 .

[18]  M. Grigoriu Stochastic Calculus: Applications in Science and Engineering , 2002 .

[19]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[20]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[21]  Hans Wackernagel,et al.  Multivariate Geostatistics: An Introduction with Applications , 1996 .

[22]  Pol D. Spanos,et al.  A stochastic Galerkin expansion for nonlinear random vibration analysis , 1993 .

[23]  E. Jaynes On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.

[24]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[25]  S. Rahman Reliability Engineering and System Safety , 2011 .

[26]  Marcel Riesz,et al.  Sur le problme des moments et le thorme de Parseval correspondant , 1924 .

[27]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[28]  Sergey Oladyshkin,et al.  Global sensitivity analysis: a flexible and efficient framework with an example from stochastic hydrogeology , 2012 .

[29]  M. Razzaghi,et al.  Bootstrap construction of the upper confidence limit for unreliability , 1992 .

[30]  P. Rentrop,et al.  Polynomial chaos for the approximation of uncertainties: Chances and limits , 2008, European Journal of Applied Mathematics.

[31]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[32]  Rainer Helmig,et al.  A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations , 2011 .

[33]  A. Saltelli,et al.  Reliability Engineering and System Safety , 2008 .

[34]  T. Ulrych,et al.  Minimum relative entropy: Forward probabilistic modeling , 1993 .

[35]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[36]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[37]  Jeroen A. S. Witteveen,et al.  Modeling Arbitrary Uncertainties Using Gram-Schmidt Polynomial Chaos , 2006 .

[38]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[39]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[40]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[41]  Henrik O. Madsen,et al.  Structural Reliability Methods , 1996 .

[42]  Guo-Kang Er A method for multi-parameter PDF estimation of random variables , 1998 .

[43]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[44]  Floriane Anstett-Collin,et al.  Sensitivity study of dynamic systems using polynomial chaos , 2012, Reliab. Eng. Syst. Saf..

[45]  Bruno Sudret,et al.  Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..

[46]  Vera Pawlowsky-Glahn Multivariate Geostatistics, An Introduction With Applications, Second, Completely Revised Edition , 2000 .

[47]  Philippe Renard,et al.  Introducing wwhypda: a world-wide collaborative hydrogeological parameters database , 2009 .

[48]  Gregery T. Buzzard,et al.  Global sensitivity analysis using sparse grid interpolation and polynomial chaos , 2012, Reliab. Eng. Syst. Saf..

[49]  Roger G. Ghanem,et al.  On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..

[50]  S. Isukapalli,et al.  Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems , 1998, Risk analysis : an official publication of the Society for Risk Analysis.

[51]  Jon C. Helton,et al.  Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models , 2009, Reliab. Eng. Syst. Saf..

[52]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[53]  A. Kiureghian,et al.  STRUCTURAL RELIABILITY UNDER INCOMPLETE PROBABILITY INFORMATION , 1986 .

[54]  H. Wackernagle,et al.  Multivariate geostatistics: an introduction with applications , 1998 .

[55]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[56]  Hermann G. Matthies,et al.  Sparse Quadrature as an Alternative to Monte Carlo for Stochastic Finite Element Techniques , 2003 .

[57]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[58]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[59]  Jeroen A. S. Witteveen,et al.  Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos , 2007 .

[60]  Allan Benjamin,et al.  A probabilistic approach to uncertainty quantification with limited information , 2003, Reliab. Eng. Syst. Saf..

[61]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[62]  T. Stieltjes,et al.  Quelques recherches sur la théorie des quadratures dites mécaniques , 1884 .

[63]  V. Sambucini A reference prior for the analysis of a response surface , 2007 .

[64]  Dongxiao Zhang,et al.  Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods , 2007 .