Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion
暂无分享,去创建一个
[1] Olivier P. Le Maître,et al. Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..
[2] S. Winterstein. Nonlinear Vibration Models for Extremes and Fatigue , 1988 .
[3] R. E. Wheeler. Statistical distributions , 1983, APLQ.
[4] A. Kiureghian,et al. Reliability analysis of contaminant transport in saturated porous media , 1994 .
[5] M. Evans. Statistical Distributions , 2000 .
[6] B. Lindsay. On the Determinants of Moment Matrices , 1989 .
[7] Franz S. Hover,et al. Uncertainty quantification in simulations of power systems: Multi-element polynomial chaos methods , 2010, Reliab. Eng. Syst. Saf..
[8] George Em Karniadakis,et al. Error Control in Multi-Element Generalized Polynomial Chaos Methodfor EllipticProblemswith Random Coefficients , 2009 .
[9] F. Maltz,et al. Variance reduction in Monte Carlo computations using multi-dimensional hermite polynomials , 1979 .
[10] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[11] M. Stone. Applications of the theory of Boolean rings to general topology , 1937 .
[12] B. Efron. The jackknife, the bootstrap, and other resampling plans , 1987 .
[13] J. Cooper. TOTAL POSITIVITY, VOL. I , 1970 .
[14] Rainer Helmig,et al. An integrative approach to robust design and probabilistic risk assessment for CO2 storage in geological formations , 2011 .
[15] Jon C. Helton,et al. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems , 2002 .
[16] Philip John Binning,et al. Brine migration resulting from CO2 injection into saline aquifers – An approach to risk estimation including various levels of uncertainty , 2012 .
[17] Liangsheng Shi,et al. Probabilistic collocation method for unconfined flow in heterogeneous media. , 2009 .
[18] M. Grigoriu. Stochastic Calculus: Applications in Science and Engineering , 2002 .
[19] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[20] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[21] Hans Wackernagel,et al. Multivariate Geostatistics: An Introduction with Applications , 1996 .
[22] Pol D. Spanos,et al. A stochastic Galerkin expansion for nonlinear random vibration analysis , 1993 .
[23] E. Jaynes. On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.
[24] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[25] S. Rahman. Reliability Engineering and System Safety , 2011 .
[26] Marcel Riesz,et al. Sur le problme des moments et le thorme de Parseval correspondant , 1924 .
[27] Hermann G. Matthies,et al. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .
[28] Sergey Oladyshkin,et al. Global sensitivity analysis: a flexible and efficient framework with an example from stochastic hydrogeology , 2012 .
[29] M. Razzaghi,et al. Bootstrap construction of the upper confidence limit for unreliability , 1992 .
[30] P. Rentrop,et al. Polynomial chaos for the approximation of uncertainties: Chances and limits , 2008, European Journal of Applied Mathematics.
[31] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[32] Rainer Helmig,et al. A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations , 2011 .
[33] A. Saltelli,et al. Reliability Engineering and System Safety , 2008 .
[34] T. Ulrych,et al. Minimum relative entropy: Forward probabilistic modeling , 1993 .
[35] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .
[36] D. Xiu. Efficient collocational approach for parametric uncertainty analysis , 2007 .
[37] Jeroen A. S. Witteveen,et al. Modeling Arbitrary Uncertainties Using Gram-Schmidt Polynomial Chaos , 2006 .
[38] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[39] B. Efron,et al. The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .
[40] Karl Pearson F.R.S.. LIII. On lines and planes of closest fit to systems of points in space , 1901 .
[41] Henrik O. Madsen,et al. Structural Reliability Methods , 1996 .
[42] Guo-Kang Er. A method for multi-parameter PDF estimation of random variables , 1998 .
[43] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[44] Floriane Anstett-Collin,et al. Sensitivity study of dynamic systems using polynomial chaos , 2012, Reliab. Eng. Syst. Saf..
[45] Bruno Sudret,et al. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..
[46] Vera Pawlowsky-Glahn. Multivariate Geostatistics, An Introduction With Applications, Second, Completely Revised Edition , 2000 .
[47] Philippe Renard,et al. Introducing wwhypda: a world-wide collaborative hydrogeological parameters database , 2009 .
[48] Gregery T. Buzzard,et al. Global sensitivity analysis using sparse grid interpolation and polynomial chaos , 2012, Reliab. Eng. Syst. Saf..
[49] Roger G. Ghanem,et al. On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..
[50] S. Isukapalli,et al. Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems , 1998, Risk analysis : an official publication of the Society for Risk Analysis.
[51] Jon C. Helton,et al. Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models , 2009, Reliab. Eng. Syst. Saf..
[52] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[53] A. Kiureghian,et al. STRUCTURAL RELIABILITY UNDER INCOMPLETE PROBABILITY INFORMATION , 1986 .
[54] H. Wackernagle,et al. Multivariate geostatistics: an introduction with applications , 1998 .
[55] Roger G. Ghanem,et al. Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..
[56] Hermann G. Matthies,et al. Sparse Quadrature as an Alternative to Monte Carlo for Stochastic Finite Element Techniques , 2003 .
[57] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[58] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[59] Jeroen A. S. Witteveen,et al. Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos , 2007 .
[60] Allan Benjamin,et al. A probabilistic approach to uncertainty quantification with limited information , 2003, Reliab. Eng. Syst. Saf..
[61] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[62] T. Stieltjes,et al. Quelques recherches sur la théorie des quadratures dites mécaniques , 1884 .
[63] V. Sambucini. A reference prior for the analysis of a response surface , 2007 .
[64] Dongxiao Zhang,et al. Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods , 2007 .