Fabrication of high-fill-factor photonic crystal devices on silicon-on-insulator substrates

Optimization of the photonic bandgap in finite-height photonic crystal (PhC) slab structures requires high-fill-factor lattices. We present a method for fabrication of high-fill-factor PhC devices in silicon-on-insulator (SOI) substrates using electron-beam lithography and high-aspect-ratio reactive-ion etching (RIE). We achieve 8:1 aspect-ratio PhC structures with 60-nm vertical membrane walls using a custom deep reactive-ion etching process in a conventional low-end RIE with patterned resist as the only etch mask. We present examples of various PhC devices fabricated using this method including a high-efficiency coupling structure for PhC waveguides.

[1]  Dennis W Prather,et al.  High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide. , 2002, Optics letters.

[2]  A. Tomita,et al.  Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide , 2000 .

[3]  Ivo W. Rangelow,et al.  Dry etching-based silicon micro-machining for MEMS , 2001 .

[4]  Hans Loschner,et al.  Reactive ion etching for microelectrical mechanical system fabrication , 1995 .

[5]  A. Scherer,et al.  Design and fabrication of silicon photonic crystal optical waveguides , 2000, Journal of Lightwave Technology.

[6]  Steven G. Johnson,et al.  Waveguide branches in photonic crystals , 2001 .

[7]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[8]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[9]  S. Moon,et al.  Expression of the Si Etch Rate in a CF 4 Plasma with Four Internal Process Variables , 1999 .

[10]  S. Aachboun,et al.  Deep anisotropic etching of silicon , 1999 .

[11]  J. Joannopoulos,et al.  High Transmission through Sharp Bends in Photonic Crystal Waveguides. , 1996, Physical review letters.

[12]  Bahram Jalali,et al.  Fabrication of high-aspect ratio photonic bandgap structures on silicon-on-insulator , 2000, Photonics West - Optoelectronic Materials and Devices.

[13]  D W Prather,et al.  Multichannel wavelength division multiplexing with photonic crystals. , 2001, Applied optics.

[14]  Thomas F. Krauss,et al.  Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths , 1996, Nature.

[15]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[16]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[17]  John D. Joannopoulos,et al.  Novel applications of photonic band gap materials: Low-loss bends and high Q cavities , 1994 .

[18]  Ivo Rendina,et al.  Advances in silicon-on-insulator optoelectronics , 1998 .

[19]  Steven G. Johnson,et al.  High-density integrated optics , 1999 .

[20]  Toshihiko Baba,et al.  Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate , 2002 .

[21]  Henry I. Smith,et al.  Photonic-bandgap microcavities in optical waveguides , 1997, Nature.