Modeling of physical network systems

Conservation laws and balance equations for physical network systems typically can be described with the aid of the incidence matrix of a directed graph, and an associated symmetric Laplacian matrix. Some basic examples are discussed, and the extension to $k$-complexes is indicated. Physical distribution networks often involve a non-symmetric Laplacian matrix. It is shown how, in case the connected components of the graph are strongly connected, such systems can be converted into a form with balanced Laplacian matrix by constructive use of Kirchhoff's Matrix Tree theorem, giving rise to a port-Hamiltonian description. Application to the dual case of asymmetric consensus algorithms is given. Finally it is shown how the minimal storage function for physical network systems with controlled flows can be explicitly computed.

[1]  Mark W. Spong,et al.  Passivity-Based Control of Multi-Agent Systems , 2006 .

[2]  P. S. Bauer Dissipative Dynamical Systems: I. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems on Graphs , 2011, SIAM J. Control. Optim..

[4]  Anders Rantzer,et al.  Scalable control of positive systems , 2012, Eur. J. Control.

[5]  A. Schaft,et al.  Hamiltonian formulation of distributed-parameter systems with boundary energy flow , 2002 .

[6]  Jan C. Willems,et al.  Terminals and Ports , 2010, IEEE Circuits and Systems Magazine.

[7]  Jeremy Gunawardena,et al.  Laplacian Dynamics on General Graphs , 2013, Bulletin of Mathematical Biology.

[8]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems Theory: An Introductory Overview , 2014, Found. Trends Syst. Control..

[9]  J. Willems The Behavioral Approach to Open and Interconnected Systems , 2007, IEEE Control Systems.

[10]  Jacquelien M. A. Scherpen,et al.  Hamiltonian perspective on compartmental reaction-diffusion networks , 2012, Autom..

[11]  Jorge Cortés,et al.  Distributed algorithms for reaching consensus on general functions , 2008, Autom..

[12]  A. Schaft,et al.  Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems , 2011, 1111.6403.

[13]  A. Schaft,et al.  Complex and detailed balancing of chemical reaction networks revisited , 2015, Journal of Mathematical Chemistry.

[14]  Frank L. Lewis,et al.  Lyapunov, Adaptive, and Optimal Design Techniques for Cooperative Systems on Directed Communication Graphs , 2012, IEEE Transactions on Industrial Electronics.

[15]  Arjan van der Schaft,et al.  Conservation Laws and Lumped System Dynamics , 2009 .

[16]  A. Schaft,et al.  The Hamiltonian formulation of energy conserving physical systems with external ports , 1995 .

[17]  Mehran Mesbahi,et al.  Advection on graphs , 2011, IEEE Conference on Decision and Control and European Control Conference.

[18]  Magnus Egerstedt,et al.  Graph Theoretic Methods in Multiagent Networks , 2010, Princeton Series in Applied Mathematics.

[19]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[20]  Arjan van der Schaft,et al.  A graph-theoretical approach for the analysis and model reduction of complex-balanced chemical reaction networks , 2012, Journal of Mathematical Chemistry.

[21]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[22]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[23]  Eduardo D. Sontag Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction , 2001, IEEE Trans. Autom. Control..

[24]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .