Gene Regulatory Networks Inference: Combining a Genetic Programming and H∞ Filtering Approach

[1]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[2]  J. Hasty,et al.  Noise-based switches and amplifiers for gene expression. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Lijun Qian,et al.  Inference of gene regulatory networks using genetic programming and Kalman filter , 2006, 2006 IEEE International Workshop on Genomic Signal Processing and Statistics.

[4]  Ming Zhang,et al.  Comparing sequences without using alignments: application to HIV/SIV subtyping , 2007, BMC Bioinformatics.

[5]  Xuemin Shen,et al.  Game theory approach to discrete H∞ filter design , 1997, IEEE Trans. Signal Process..

[6]  U. Shaked,et al.  H,-OPTIMAL ESTIMATION: A TUTORIAL , 1992 .

[7]  E.R. Dougherty,et al.  Research issues in genomic signal processing , 2005, IEEE Signal Processing Magazine.

[8]  Aniruddha Datta,et al.  Optimal infinite horizon control for probabilistic Boolean networks , 2006, 2006 American Control Conference.

[9]  Robert Reynolds,et al.  Fuzzy logic-based gene regulatory network , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[10]  E. Dougherty,et al.  Gene perturbation and intervention in probabilistic Boolean networks. , 2002, Bioinformatics.

[11]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[12]  J. Raser,et al.  Noise in Gene Expression: Origins, Consequences, and Control , 2005, Science.

[13]  Hongyu Zhao,et al.  Reconstructing transcriptional regulatory networks through genomics data , 2009, Statistical methods in medical research.

[14]  Yi Tao Intrinsic noise, gene regulation and steady-state statistics in a two-gene network. , 2004, Journal of theoretical biology.

[15]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  David H. Sharp,et al.  A connectionist model of development. , 1991, Journal of theoretical biology.

[17]  D. Bernstein,et al.  Steady-state Kalman filtering with an H ∞ error bound , 1989 .

[18]  Hitoshi Iba,et al.  Evolutionary modeling and inference of gene network , 2002, Inf. Sci..

[19]  P. Khargonekar,et al.  Filtering and smoothing in an H/sup infinity / setting , 1991 .

[20]  P. Woolf,et al.  A fuzzy logic approach to analyzing gene expression data. , 2000, Physiological genomics.

[21]  I. Tabus,et al.  Genetic networks inferred from time series of gene expression data , 2004, First International Symposium on Control, Communications and Signal Processing, 2004..

[22]  Xuemin Shen,et al.  A dynamic system approach to speech enhancement using the H∞ filtering algorithm , 1999, IEEE Trans. Speech Audio Process..

[23]  E D Sontag For Differential Equations with r Parameters, 2r+1 Experiments Are Enough for Identification , 2003, J. Nonlinear Sci..

[24]  Yi Tao,et al.  Intrinsic and external noise in an auto-regulatory genetic network. , 2004, Journal of theoretical biology.

[25]  Alfonso Martinez Arias,et al.  Filtering transcriptional noise during development: concepts and mechanisms , 2006, Nature Reviews Genetics.

[26]  Ron Weiss,et al.  The effect of negative feedback on noise propagation in transcriptional gene networks. , 2006, Chaos.

[27]  Xiaobo Zhou,et al.  Construction of genomic networks using mutual-information clustering and reversible-jump Markov-chain-Monte-Carlo predictor design , 2003, Signal Process..

[28]  Yulan Liang,et al.  Hierarchical Bayesian Neural Network for Gene Expression Temporal Patterns , 2004, Statistical applications in genetics and molecular biology.

[29]  Satoru Miyano,et al.  Inferring qualitative relations in genetic networks and metabolic pathways , 2000, Bioinform..

[30]  Michael Schroeder,et al.  Using structural motif descriptors for sequence-based binding site prediction , 2007, BMC Bioinformatics.

[31]  T. Kepler,et al.  Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. , 2001, Biophysical journal.

[32]  Jinzhi Lei,et al.  Stochasticity in single gene expression with both intrinsic noise and fluctuation in kinetic parameters. , 2009, Journal of theoretical biology.

[33]  Lijun Qian,et al.  Inference of Genetic Regulatory Networks by Evolutionary Algorithm and H∞ Filtering , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[34]  Jesper Tegnér,et al.  Reverse engineering gene networks using singular value decomposition and robust regression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  S. Kimura,et al.  Inference of S-system Models of Genetic Networks from Noisy Time-series Data , 2004 .

[36]  T. Elston,et al.  Stochasticity in gene expression: from theories to phenotypes , 2005, Nature Reviews Genetics.

[37]  Ilya Shmulevich,et al.  On Learning Gene Regulatory Networks Under the Boolean Network Model , 2003, Machine Learning.

[38]  Min Zou,et al.  A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data , 2005, Bioinform..