Variational Bayesian Inference for Infinite Dirichlet Mixture Towards Accurate Data Categorization

In this paper, we focus on a variational Bayesian learning approach to infinite Dirichlet mixture model (VarInDMM) which inherits the confirmed effectiveness of modeling proportional data from infinite Dirichlet mixture model. Based on the Dirichlet process mixture model, VarInDMM has an interpretation as a mixture model with a countably infinite number of components, and it is able to determine the optimal value of this number according to the observed data. By introducing an extended variational inference framework, we further obtain an analytically tractable solution to estimate the posterior distributions of the parameters for the mixture model. Experimental results on both synthetic and real data demonstrate its good performance on object categorization and text categorization.

[1]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Hui Zhang,et al.  A Bayesian Bounded Asymmetric Mixture Model With Segmentation Application , 2014, IEEE Journal of Biomedical and Health Informatics.

[3]  Markus Flierl,et al.  Bayesian estimation of Dirichlet mixture model with variational inference , 2014, Pattern Recognit..

[4]  Alfons Juan-Císcar,et al.  On the use of Bernoulli mixture models for text classification , 2001, Pattern Recognit..

[5]  Urbano Nunes,et al.  Trainable classifier-fusion schemes: An application to pedestrian detection , 2009, 2009 12th International IEEE Conference on Intelligent Transportation Systems.

[6]  Chunguang Li,et al.  The infinite Student's t-mixture for robust modeling , 2012, Signal Process..

[7]  Arne Leijon,et al.  Bayesian Estimation of Beta Mixture Models with Variational Inference , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Q. M. Jonathan Wu,et al.  A Nonsymmetric Mixture Model for Unsupervised Image Segmentation , 2013, IEEE Transactions on Cybernetics.

[9]  Perry R. Cook,et al.  Bayesian Nonparametric Matrix Factorization for Recorded Music , 2010, ICML.

[10]  Nizar Bouguila,et al.  Infinite Liouville mixture models with application to text and texture categorization , 2012, Pattern Recognit. Lett..

[11]  Douglas A. Reynolds,et al.  Speaker Verification Using Adapted Gaussian Mixture Models , 2000, Digit. Signal Process..

[12]  Bo Tang,et al.  A Bayesian Classification Approach Using Class-Specific Features for Text Categorization , 2016, IEEE Transactions on Knowledge and Data Engineering.

[13]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[14]  Honggang Zhang,et al.  Variational Bayesian Matrix Factorization for Bounded Support Data , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Arne Leijon,et al.  Vector quantization of LSF parameters with a mixture of dirichlet distributions , 2013, IEEE Transactions on Audio, Speech, and Language Processing.

[16]  Jun Guo,et al.  Cross-modal subspace learning for fine-grained sketch-based image retrieval , 2017, Neurocomputing.

[17]  Nizar Bouguila,et al.  Unsupervised selection of a finite Dirichlet mixture model: an MML-based approach , 2006, IEEE Transactions on Knowledge and Data Engineering.

[18]  Zhen Yang,et al.  Decorrelation of Neutral Vector Variables: Theory and Applications , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[19]  Nizar Bouguila,et al.  A Dirichlet Process Mixture of Generalized Dirichlet Distributions for Proportional Data Modeling , 2010, IEEE Transactions on Neural Networks.

[20]  Nizar Bouguila,et al.  Hybrid Generative/Discriminative Approaches for Proportional Data Modeling and Classification , 2012, IEEE Transactions on Knowledge and Data Engineering.

[21]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[22]  Jun Guo,et al.  Line spectral frequencies modeling by a mixture of von Mises-Fisher distributions , 2015, Signal Process..

[23]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[24]  Qian Du,et al.  Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Christoph H. Lampert,et al.  Attribute-Based Classification for Zero-Shot Visual Object Categorization , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[27]  Bernt Schiele,et al.  Analyzing appearance and contour based methods for object categorization , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[28]  Nizar Bouguila,et al.  Variational Learning for Finite Dirichlet Mixture Models and Applications , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[29]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[30]  Douglas A. Reynolds,et al.  Robust text-independent speaker identification using Gaussian mixture speaker models , 1995, IEEE Trans. Speech Audio Process..

[31]  Deng Cai,et al.  Manifold Adaptive Experimental Design for Text Categorization , 2012, IEEE Transactions on Knowledge and Data Engineering.

[32]  Jun Guo,et al.  The Role of Data Analysis in the Development of Intelligent Energy Networks , 2017, IEEE Network.

[33]  Jun Guo,et al.  Feature selection for neutral vector in EEG signal classification , 2016, Neurocomputing.

[34]  Samuel J. Gershman,et al.  A Tutorial on Bayesian Nonparametric Models , 2011, 1106.2697.

[35]  Shun-ichi Amari,et al.  The AIC Criterion and Symmetrizing the Kullback–Leibler Divergence , 2007, IEEE Transactions on Neural Networks.

[36]  Yixian Yang,et al.  Efficient representation of text with multiple perspectives , 2012 .

[37]  Lorenzo Torresani,et al.  Classemes and Other Classifier-Based Features for Efficient Object Categorization , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[39]  Nizar Bouguila,et al.  Variational learning for Dirichlet process mixtures of Dirichlet distributions and applications , 2012, Multimedia Tools and Applications.

[40]  M. F. Porter,et al.  An algorithm for suffix stripping , 1997 .

[41]  Yixian Yang,et al.  Fast and scalable support vector clustering for large-scale data analysis , 2013, Knowledge and Information Systems.

[42]  Neil D. Lawrence,et al.  Approximating Posterior Distributions in Belief Networks Using Mixtures , 1997, NIPS.

[43]  Jalil Taghia,et al.  Bayesian Estimation of the von-Mises Fisher Mixture Model with Variational Inference , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[46]  Xi Liu,et al.  A feature binding computational model for multi-class object categorization and recognition , 2011, Neural Computing and Applications.

[47]  Jun Guo,et al.  Dirichlet mixture modeling to estimate an empirical lower bound for LSF quantization , 2014, Signal Process..

[48]  Tao Qin,et al.  Hierarchical taxonomy preparation for text categorization using consistent bipartite spectral graph copartitioning , 2005, IEEE Transactions on Knowledge and Data Engineering.

[49]  Jun Guo,et al.  Spoofing Detection in Automatic Speaker Verification Systems Using DNN Classifiers and Dynamic Acoustic Features , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[50]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[51]  Yuehua Yang,et al.  FRSVC: Towards making support vector clustering consume less , 2017, Pattern Recognit..

[52]  Hai Jiang,et al.  A Mixture Gamma Distribution to Model the SNR of Wireless Channels , 2011, IEEE Transactions on Wireless Communications.

[53]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[54]  Nizar Bouguila,et al.  Online Learning of a Dirichlet Process Mixture of Beta-Liouville Distributions Via Variational Inference , 2013, IEEE Transactions on Neural Networks and Learning Systems.