Crowding, grouping, and object recognition: A matter of appearance.

In crowding, the perception of a target strongly deteriorates when neighboring elements are presented. Crowding is usually assumed to have the following characteristics. (a) Crowding is determined only by nearby elements within a restricted region around the target (Bouma's law). (b) Increasing the number of flankers can only deteriorate performance. (c) Target-flanker interference is feature-specific. These characteristics are usually explained by pooling models, which are well in the spirit of classic models of object recognition. In this review, we summarize recent findings showing that crowding is not determined by the above characteristics, thus, challenging most models of crowding. We propose that the spatial configuration across the entire visual field determines crowding. Only when one understands how all elements of a visual scene group with each other, can one determine crowding strength. We put forward the hypothesis that appearance (i.e., how stimuli look) is a good predictor for crowding, because both crowding and appearance reflect the output of recurrent processing rather than interactions during the initial phase of visual processing.

[1]  Max Wertheimer,et al.  Untersuchungen zur Lehre von der Gestalt , .

[2]  M. Wertheimer Untersuchungen zur Lehre von der Gestalt. II , 1923 .

[3]  M C FLOM,et al.  Contour Interaction and Visual Resolution: Contralateral Effects , 1963, Science.

[4]  H. BOUMA,et al.  Interaction Effects in Parafoveal Letter Recognition , 1970, Nature.

[5]  H. Bouma Visual interference in the parafoveal recognition of initial and final letters of words. , 1973, Vision research.

[6]  Gerald Westheimer,et al.  Temporal and spatial interference with vernier acuity , 1975, Vision Research.

[7]  H. Bouma,et al.  Eccentric vision: Adverse interactions between line segments , 1976, Vision Research.

[8]  Carol L. Krumhansl,et al.  Effect of level of confusability on reporting letters from briefly presented visual displays , 1977 .

[9]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[10]  W. Banks,et al.  Asymmetry of visual interference , 1979, Perception & psychophysics.

[11]  G Wolford,et al.  Lateral masking as a function of spacing , 1983, Perception & psychophysics.

[12]  W P Banks,et al.  Lateral interference and perceptual grouping in visual detection , 1984, Perception & psychophysics.

[13]  S. Klein,et al.  Vernier acuity, crowding and cortical magnification , 1985, Vision Research.

[14]  I. Rentschler,et al.  Contrast thresholds for identification of numeric characters in direct and eccentric view , 1991, Perception & psychophysics.

[15]  D. Levi,et al.  The two-dimensional shape of spatial interaction zones in the parafovea , 1992, Vision Research.

[16]  Tatjana A. Nazir,et al.  Effects of lateral masking and spatial precueing on gap-resolution in central and peripheral vision , 1992, Vision Research.

[17]  E. Adelson Perceptual organization and the judgment of brightness. , 1993, Science.

[18]  D. Levi,et al.  The effect of similarity and duration on spatial interaction in peripheral vision. , 1994, Spatial vision.

[19]  Dennis M. Levi,et al.  Long-range dichoptic interactions in the human visual cortex in the region corresponding to the blind spot , 1994, Vision Research.

[20]  B. Dosher,et al.  The role of attention in the programming of saccades , 1995, Vision Research.

[21]  P. Cavanagh,et al.  Attentional resolution and the locus of visual awareness , 1996, Nature.

[22]  H. Deubel,et al.  Saccade target selection and object recognition: Evidence for a common attentional mechanism , 1996, Vision Research.

[23]  H. Wilson,et al.  Lateral interactions in peripherally viewed texture arrays. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  G. Francis,et al.  Cortical dynamics of lateral inhibition: metacontrast masking. , 1997, Psychological review.

[25]  S. Grossberg,et al.  Neural dynamics of binocular brightness perception , 1999, Vision Research.

[26]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[27]  P. Cavanagh Seeing the forest but not the trees , 2001, Nature Neuroscience.

[28]  C Koch,et al.  Seeing properties of an invisible object: Feature inheritance and shine-through , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Susana T. L. Chung,et al.  Spatial-frequency and contrast properties of crowding , 2001, Vision Research.

[30]  J. Lund,et al.  Compulsory averaging of crowded orientation signals in human vision , 2001, Nature Neuroscience.

[31]  P. Cavanagh,et al.  The Spatial Resolution of Visual Attention , 2001, Cognitive Psychology.

[32]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[33]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[34]  A. Huckauf,et al.  Spatial selection in peripheral letter recognition: in search of boundary conditions. , 2002, Acta psychologica.

[35]  Michael H. Herzog,et al.  Effects of grouping in contextual modulation , 2002, Nature.

[36]  S. Klein,et al.  Suppressive and facilitatory spatial interactions in peripheral vision: peripheral crowding is neither size invariant nor simple contrast masking. , 2002, Journal of vision.

[37]  H. Bülthoff,et al.  Perceptual Organization of Local Elements into Global Shapes in the Human Visual Cortex , 2003, Current Biology.

[38]  S. Dakin,et al.  The shape and size of crowding for moving targets , 2003, Vision Research.

[39]  D. Pelli,et al.  Crowding is unlike ordinary masking: distinguishing feature integration from detection. , 2004, Journal of vision.

[40]  G. Francis,et al.  Using afterimages for orientation and color to explore mechanisms of visual filling-in , 2005, Perception & psychophysics.

[41]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[42]  D. Pelli,et al.  Are faces processed like words? A diagnostic test for recognition by parts. , 2005, Journal of vision.

[43]  M. Morgan,et al.  The Role of Target Salience in Crowding , 2005, Perception.

[44]  Stephen Grossberg,et al.  A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis. , 2004, Spatial vision.

[45]  Gordon E. Legge,et al.  Psychophysics of Reading in Normal and Low Vision , 2006 .

[46]  Endel Põder,et al.  Crowding, feature integration, and two kinds of "attention". , 2006, Journal of vision.

[47]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[48]  E. Louie,et al.  Holistic crowding: selective interference between configural representations of faces in crowded scenes. , 2007, Journal of vision.

[49]  Endel Põder,et al.  Effect of colour pop-out on the recognition of letters in crowding conditions , 2007, Psychological research.

[50]  Edward Awh,et al.  Spatial attention, preview, and popout: which factors influence critical spacing in crowded displays? , 2007, Journal of vision.

[51]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  S. Grossberg,et al.  Texture segregation by visual cortex: Perceptual grouping, attention, and learning , 2007, Vision Research.

[53]  Anke Huckauf,et al.  Task set determines the amount of crowding , 2007, Psychological research.

[54]  Gerald Westheimer,et al.  Grouping of contextual elements that affect vernier thresholds. , 2007, Journal of vision.

[55]  David Whitney,et al.  Position shifts following crowded second-order motion adaptation reveal processing of local and global motion without awareness. , 2007, Journal of vision.

[56]  G. Francis,et al.  What is the strength of a mask in visual metacontrast masking? , 2007, Journal of vision.

[57]  Dov Sagi,et al.  Configuration influence on crowding. , 2007, Journal of vision.

[58]  D. Pelli,et al.  The uncrowded window of object recognition , 2008, Nature Neuroscience.

[59]  D. Levi Crowding—An essential bottleneck for object recognition: A mini-review , 2008, Vision Research.

[60]  Gerald Westheimer,et al.  Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity. , 2008, Journal of vision.

[61]  D. Pelli Crowding: a cortical constraint on object recognition , 2008, Current Opinion in Neurobiology.

[62]  G. Westheimer,et al.  Global stimulus configuration modulates crowding. , 2009, Journal of vision.

[63]  F. Scharnowski,et al.  Long-lasting modulation of feature integration by transcranial magnetic stimulation. , 2009, Journal of vision.

[64]  Dennis M. Levi,et al.  Crowding in Peripheral Vision: Why Bigger Is Better , 2009, Current Biology.

[65]  Steven C Dakin,et al.  Positional averaging explains crowding with letter-like stimuli , 2009, Proceedings of the National Academy of Sciences.

[66]  David Whitney,et al.  Holistic crowding of Mooney faces. , 2009, Journal of vision.

[67]  Won Mok Shim,et al.  Supercrowding: weakly masking a target expands the range of crowding. , 2009, Journal of vision.

[68]  R. Rosenholtz,et al.  A summary-statistic representation in peripheral vision explains visual crowding. , 2009, Journal of vision.

[69]  Sheng He,et al.  Reduction of the Crowding Effect in Spatially Adjacent but Cortically Remote Visual Stimuli , 2009, Current Biology.

[70]  Toni P Saarela,et al.  Size tuning and contextual modulation of backward contrast masking. , 2009, Journal of vision.

[71]  Gregory Francis,et al.  Cortical dynamics of figure-ground segmentation: Shine-through , 2009, Vision Research.

[72]  Y. Yeshurun,et al.  Precueing attention to the target location diminishes crowding and reduces the critical distance. , 2010, Journal of vision.

[73]  Jos B. T. M. Roerdink,et al.  A Neurophysiologically Plausible Population Code Model for Feature Integration Explains Visual Crowding , 2010, PLoS Comput. Biol..

[74]  Dov Sagi,et al.  How do flankers' relations affect crowding? , 2010, Journal of vision.

[75]  G Westheimer,et al.  Gestalt Factors Modulate Basic Spatial Vision , 2010, Psychological science.

[76]  G Westheimer,et al.  The effect of spacing regularity on visual crowding. , 2010, Journal of vision.

[77]  Steven C. Dakin,et al.  Crowding Changes Appearance , 2010, Current Biology.

[78]  Ramakrishna Chakravarthi,et al.  Crowding reveals a third stage of object recognition , 2011 .

[79]  Eero P. Simoncelli,et al.  Metamers of the ventral stream , 2011, Nature Neuroscience.

[80]  D. Pelli,et al.  The same binding in contour integration and crowding. , 2011, Journal of vision.

[81]  J. M. Wallace,et al.  Object crowding. , 2011, Journal of vision.

[82]  Sid Kouider,et al.  Multi-feature objects elicit nonconscious priming despite crowding. , 2011, Journal of vision.

[83]  Sieu K. Khuu,et al.  Configuration specificity of crowding in peripheral vision , 2011, Vision Research.

[84]  Thomas A Carlson,et al.  Crowding is tuned for perceived (not physical) location. , 2011, Journal of vision.

[85]  Peter J. Bex,et al.  Visual Crowding Is Correlated with Awareness , 2011, Current Biology.

[86]  David Whitney,et al.  Perceived Positions Determine Crowding , 2011, PloS one.

[87]  Gerald Westheimer,et al.  Quantifying target conspicuity in contextual modulation by visual search. , 2011, Journal of vision.

[88]  D. Whitney,et al.  Object-level visual information gets through the bottleneck of crowding. , 2011, Journal of neurophysiology.

[89]  D. Levi,et al.  Visual crowding: a fundamental limit on conscious perception and object recognition , 2011, Trends in Cognitive Sciences.

[90]  Jeremy Freeman,et al.  Inter-area correlations in the ventral visual pathway reflect feature integration. , 2010, Journal of vision.

[91]  Sid Kouider,et al.  Preference Is Biased by Crowded Facial Expressions , 2011, Psychological science.

[92]  R. Rosenholtz,et al.  A summary statistic representation in peripheral vision explains visual search. , 2009, Journal of vision.

[93]  Daniel Oberfeld,et al.  Sequential Grouping Modulates the Effect of Non-Simultaneous Masking on Auditory Intensity Resolution , 2012, PloS one.

[94]  Elaine J. Anderson,et al.  The Neural Correlates of Crowding-Induced Changes in Appearance , 2011, Current Biology.

[95]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[96]  Bilge Sayim,et al.  Grouping, pooling, and when bigger is better in visual crowding. , 2012, Journal of vision.

[97]  Anirvan S. Nandy,et al.  Saccade-confounded image statistics explain visual crowding , 2012, Nature Neuroscience.

[98]  Patrick Cavanagh,et al.  Semantic Priming From Crowded Words , 2012, Psychological science.

[99]  Lei Liu,et al.  Whole report uncovers correctly identified but incorrectly placed target information under visual crowding. , 2012, Journal of vision.

[100]  Sung Jun Joo,et al.  Long-Range, Pattern-Dependent Contextual Effects in Early Human Visual Cortex , 2011, Current Biology.

[101]  G. V. van Rens,et al.  A systematic review on ‘Foveal Crowding’ in visually impaired children and perceptual learning as a method to reduce Crowding , 2012, BMC Ophthalmology.

[102]  Nicholas C. Foley,et al.  Neural Dynamics of Object-based Multifocal Visual Spatial Attention and Priming: Object Cueing, Useful-field-of-view, and Crowding Cognitive Psychology , 2012 .

[103]  Jason B. Mattingley,et al.  Visual Crowding at a Distance during Predictive Remapping , 2013, Current Biology.

[104]  Jonathan Grainger,et al.  Constraints on Letter-in-String Identification in Peripheral Vision: Effects of Number of Flankers and Deployment of Attention , 2013, Front. Psychol..

[105]  R. Remington,et al.  Eye Movement Targets Are Released from Visual Crowding , 2013, The Journal of Neuroscience.

[106]  M. Herzog,et al.  When crowding of crowding leads to uncrowding. , 2013, Journal of vision.

[107]  Mechanisms behind Perisaccadic Increase of Perception , 2013, The Journal of Neuroscience.

[108]  Patrick Cavanagh,et al.  Grouping and Crowding Affect Target Appearance over Different Spatial Scales , 2013, PloS one.

[109]  Patrick Cavanagh,et al.  Crowding of biological motion stimuli. , 2013, Journal of vision.

[110]  M. Herzog,et al.  How color, regularity, and good Gestalt determine backward masking. , 2014, Journal of vision.

[111]  David Whitney,et al.  Facilitating recognition of crowded faces with presaccadic attention , 2014, Front. Hum. Neurosci..

[112]  Uri Polat,et al.  Uncovering foveal crowding? , 2014, Scientific Reports.

[113]  P. Cavanagh,et al.  Foveal target repetitions reduce crowding. , 2014, Journal of vision.

[114]  Susana T. L. Chung,et al.  Visual Crowding in V 1 , 2014 .

[115]  D. Pelli,et al.  The Bouma law of crowding, revised: critical spacing is equal across parts, not objects. , 2014, Journal of vision.

[116]  Edward Awh,et al.  Visual crowding cannot be wholly explained by feature pooling. , 2014, Journal of experimental psychology. Human perception and performance.

[117]  Peter J Bex,et al.  Integrating Retinotopic Features in Spatiotopic Coordinates , 2014, The Journal of Neuroscience.

[118]  Yaffa Yeshurun,et al.  Contrast dissimilarity effects on crowding are not simply another case of target saliency. , 2014, Journal of vision.

[119]  Yingchen He,et al.  Attention-Dependent Early Cortical Suppression Contributes to Crowding , 2014, The Journal of Neuroscience.

[120]  Haluk Öğmen,et al.  Invisibility and interpretation , 2014, Front. Psychol..

[121]  Michael H. Herzog,et al.  Visual crowding illustrates the inadequacy of local vs. global and feedforward vs. feedback distinctions in modeling visual perception , 2014, Front. Psychol..

[122]  D. Kurylo,et al.  Perceptual grouping across eccentricity , 2014, Vision Research.

[123]  Rachel Millin,et al.  Radial-tangential anisotropy of crowding in the early visual areas. , 2014, Journal of neurophysiology.

[124]  Rachel Millin,et al.  Visual crowding in V1. , 2014, Cerebral cortex.

[125]  Michael H. Herzog,et al.  Neural correlates of visual crowding , 2014, NeuroImage.

[126]  J. Siderov,et al.  Foveal crowding differs in children and adults. , 2014, Journal of vision.

[127]  Martin Arguin,et al.  A crowdful of letters: Disentangling the role of similarity, eccentricity and spatial frequencies in letter crowding , 2014, Vision Research.

[128]  Michael H. Herzog,et al.  Uncorking the bottleneck of crowding: a fresh look at object recognition , 2015, Current Opinion in Behavioral Sciences.

[129]  Edward F. Ester,et al.  Substitution and pooling in visual crowding induced by similar and dissimilar distractors. , 2015, Journal of vision.

[130]  Jason M Haberman,et al.  From Textures to Crowds : Multiple Levels of Summary Statistical Perception , 2017 .