Remarks on entanglement measures and non-local state distinguishability

We investigate the properties of three entanglement measures that quantify the statistical distinguishability of a given state with the closest disentangled state that has the same reductions as the primary state. In particular, we concentrate on the relative entropy of entanglement with reversed entries. We show that this quantity is an entanglement monotone which is strongly additive, thereby demonstrating that monotonicity under local quantum operations and strong additivity are compatible in principle. In accordance with the presented statistical interpretation which is provided, this entanglement monotone, however, has the property that it diverges on pure states, with the consequence that it cannot distinguish the degree of entanglement of different pure states. We also prove that the relative entropy of entanglement with respect to the set of disentangled states that have identical reductions to the primary state is an entanglement monotone. We finally investigate the trace-norm measure and demonstrate that it is also a proper entanglement monotone.

[1]  C. Witte,et al.  A NEW ENTANGLEMENT MEASURE INDUCED BY THE HILBERT-SCHMIDT NORM , 1998, quant-ph/9811027.

[2]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[3]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[4]  David W. Lewis,et al.  Matrix theory , 1991 .

[5]  M. Plenio,et al.  Teleportation, entanglement and thermodynamics in the quantum world , 1998 .

[6]  J. Eisert,et al.  On the quantification of entanglement in infinite-dimensional quantum systems , 2001, quant-ph/0112064.

[7]  A. Wehrl General properties of entropy , 1978 .

[8]  Jeroen Dehaene,et al.  On the geometry of entangled states , 2001, quant-ph/0107155.

[9]  K. Audenaert,et al.  Entanglement cost under positive-partial-transpose-preserving operations. , 2003, Physical review letters.

[10]  The reduction of the closest disentangled states , 2002, quant-ph/0203084.

[11]  K. Jacobs,et al.  Statistical Inference, Distinguishability of Quantum States, And Quantum Entanglement , 1997, quant-ph/9703025.

[12]  E. Rains RIGOROUS TREATMENT OF DISTILLABLE ENTANGLEMENT , 1998, quant-ph/9809078.

[13]  M. B. Plenio,et al.  Bounds on relative entropy of entanglement for multi-party systems , 2001 .

[14]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[15]  G. J. Milburn,et al.  Implementing the quantum random walk , 2002 .

[16]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[17]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[18]  M. Horodecki,et al.  Limits for entanglement measures. , 1999, Physical review letters.

[19]  R. Werner,et al.  Entanglement measures under symmetry , 2000, quant-ph/0010095.

[20]  Vlatko Vedral,et al.  Entanglement in Quantum Information Theory , 1998, quant-ph/9804075.

[21]  M. Horodecki,et al.  Continuity of relative entropy of entanglement , 1999, quant-ph/9910002.

[22]  G. Vidal On the characterization of entanglement , 1998 .

[23]  E. Rains Bound on distillable entanglement , 1998, quant-ph/9809082.

[24]  Anirvan M. Sengupta,et al.  Classical analog of quantum search , 2002 .

[25]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[26]  K. Audenaert,et al.  Asymptotic relative entropy of entanglement. , 2001, Physical review letters.

[27]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[28]  M. Horodecki,et al.  The Uniqueness Theorem for Entanglement Measures , 2001, quant-ph/0105017.

[29]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[30]  J. Cirac,et al.  Entanglement cost of bipartite mixed states. , 2001, Physical Review Letters.

[31]  M. Ozawa Entanglement measures and the Hilbert-Schmidt distance , 2000, quant-ph/0002036.

[32]  Papadopoulos,et al.  Classical information and distillable entanglement , 1999, Physical review letters.

[33]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  J. Eisert,et al.  A comparison of entanglement measures , 1998, quant-ph/9807034.

[36]  M. Horodecki,et al.  The asymptotic entanglement cost of preparing a quantum state , 2000, quant-ph/0008134.