Multiple piecewise constant with geodesic active contours (MPC-GAC) framework for interactive image segmentation using graph cut optimization

article i nfo This paper proposes an improved variational model, multiple piecewise constant with geodesic active contour (MPC-GAC) model, which generalizes the region-based active contour model by Chan and Vese, 2001 (11) and merges the edge-based active contour by Caselles et al., 1997 (7) to inherit the advantages of region-based and edge-based image segmentation models. We show that the new MPC-GAC energy functional can be iteratively minimized by graph cut algorithms with high computational efficiency compared with the level set framework. This iterative algorithm alternates between the piecewise constant functional learning and the foreground and background updating so that the energy value gradually decreases to the minimum of the energy functional. The k-means method is used to compute the piecewise constant values of the fore- ground and background of image. We use a graph cut method to detect and update the foreground and background. Numerical experiments show that the proposed interactive segmentation method based on the MPC-GAC model by graph cut optimization can effectively segment images with inhomogeneous objects and background.

[1]  Vladimir Kolmogorov,et al.  Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[2]  Xue-Cheng Tai,et al.  A variant of the level set method and applications to image segmentation , 2006, Math. Comput..

[3]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[4]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[6]  Herbert Freeman Obituary Jean Claude Simon 1924 to 2000 , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Shimon Even,et al.  Graph Algorithms: Flow in Networks , 2011 .

[8]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[9]  Alfred Mertins,et al.  Local Region Descriptors for Active Contours Evolution , 2008, IEEE Transactions on Image Processing.

[10]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[11]  Olivier D. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[12]  Alfred M. Bruckstein,et al.  Finding Shortest Paths on Surfaces Using Level Sets Propagation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Josiane Zerubia,et al.  A Variational Model for Image Classification and Restoration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[15]  Stanley Osher,et al.  REVIEW ARTICLE: Level Set Methods and Their Applications in Image Science , 2003 .

[16]  Rachid Deriche,et al.  Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach , 2000, ECCV.

[17]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[18]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Hai Jin,et al.  Color Image Segmentation Based on Mean Shift and Normalized Cuts , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  Dima Damen,et al.  Recognizing linked events: Searching the space of feasible explanations , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[22]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Xavier Bresson,et al.  Fast Global Minimization of the Active Contour/Snake Model , 2007, Journal of Mathematical Imaging and Vision.

[24]  Harry Shum,et al.  Lazy snapping , 2004, ACM Trans. Graph..

[25]  Adel Said Elmaghraby,et al.  Graph cut optimization for the Mumford-Shah model , 2007 .

[26]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.

[27]  Xue-Cheng Tai,et al.  A binary level set model and some applications to Mumford-Shah image segmentation , 2006, IEEE Transactions on Image Processing.

[28]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[29]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[30]  Leo Grady,et al.  Discrete Calculus - Applied Analysis on Graphs for Computational Science , 2010 .

[31]  Antonin Chambolle,et al.  Total Variation Minimization and a Class of Binary MRF Models , 2005, EMMCVPR.

[32]  Tao Zhang,et al.  Tracking objects using density matching and shape priors , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[33]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[34]  Christopher V. Alvino,et al.  The Piecewise Smooth Mumford–Shah Functional on an Arbitrary Graph , 2009, IEEE Transactions on Image Processing.

[35]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[37]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[38]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[39]  Nikos Paragios,et al.  Handbook of Mathematical Models in Computer Vision , 2005 .

[40]  Wei Chen,et al.  Efficiently Solving the Piecewise Constant Mumford-Shah Model using Graph Cuts , 2005 .

[41]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[42]  Yutaka Hata,et al.  Interactive segmentation of the cerebral lobes with fuzzy inference in 3T MR images , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[43]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[44]  Yunmei Chen,et al.  Using Prior Shapes in Geometric Active Contours in a Variational Framework , 2002, International Journal of Computer Vision.

[45]  Feiping Nie,et al.  Interactive Natural Image Segmentation via Spline Regression , 2009, IEEE Transactions on Image Processing.

[46]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[47]  Feiping Nie,et al.  Semi-Supervised Classification via Local Spline Regression , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Daniel Cremers,et al.  An Integral Solution to Surface Evolution PDEs Via Geo-cuts , 2006, ECCV.

[49]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[50]  E. A. Dinic Algorithm for solution of a problem of maximal flow in a network with power estimation , 1970 .

[51]  Allen R. Tannenbaum,et al.  Localizing Region-Based Active Contours , 2008, IEEE Transactions on Image Processing.