Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling

[1]  S. Raël,et al.  Using electrical analogy to describe mass and charge transport in lithium-ion batteries , 2013 .

[2]  Gregory L. Plett,et al.  Controls oriented reduced order modeling of lithium deposition on overcharge , 2012 .

[3]  Sandrine Bourlot,et al.  Investigation of aging mechanisms of high power Li-ion cells used for hybrid electric vehicles , 2011 .

[4]  Robert J. Kee,et al.  Thermodynamically consistent modeling of elementary electrochemistry in lithium-ion batteries , 2010 .

[5]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[6]  M. Verbrugge,et al.  Aging Mechanisms of LiFePO4 Batteries Deduced by Electrochemical and Structural Analyses , 2010 .

[7]  Phatiphat Thounthong,et al.  Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications , 2009 .

[8]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[9]  P. Thounthong,et al.  Control Algorithm of Fuel Cell and Batteries for Distributed Generation System , 2008, IEEE Transactions on Energy Conversion.

[10]  Chaoyang Wang,et al.  Control oriented 1D electrochemical model of lithium ion battery , 2007 .

[11]  Linda F. Nazar,et al.  Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries , 2007 .

[12]  Shengbo Zhang The effect of the charging protocol on the cycle life of a Li-ion battery , 2006 .

[13]  Chaoyang Wang,et al.  Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles , 2006 .

[14]  Kang Xu,et al.  Study of the charging process of a LiCoO2-based Li-ion battery , 2006 .

[15]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[16]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[17]  M. Broussely,et al.  Main aging mechanisms in Li ion batteries , 2005 .

[18]  Guy Sarre,et al.  Aging of lithium-ion batteries , 2004 .

[19]  M. Broussely,et al.  Aging mechanism in Li ion cells and calendar life predictions , 2001 .

[20]  Marc Doyle,et al.  Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium‐Ion Batteries Using Carbon‐Based Negative Electrodes , 1999 .

[21]  M. Verbrugge,et al.  The effect of large negative potentials and overcharge on the electrochemical performance of lithiated carbon , 1997 .

[22]  D. Aurbach,et al.  Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems , 1997 .

[23]  Marc Doyle,et al.  The Use of Mathematical-Modeling in the Design of Lithium Polymer Battery Systems , 1995 .

[24]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[25]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .