Effect of bimodal WC particle size and binder composition on the morphology of WC grains in WC–Co–Ni3Al cemented carbides

[1]  J. Schoenung,et al.  High temperature compressive properties and microstructure of WC-Ni3Al cermets prepared by spark plasma sintering , 2020 .

[2]  Huijun Li,et al.  Microstructural evolution and phase transformation of Ni3Al-based superalloys after thermal exposure , 2020 .

[3]  Yongchang Liu,et al.  Cyclic oxidation behavior of Ni3Al-basedsuperalloy , 2019, Vacuum.

[4]  José García,et al.  Cemented carbide microstructures: a review , 2019, International Journal of Refractory Metals and Hard Materials.

[5]  A. Borgenstam,et al.  Modelling of prismatic grain growth in cemented carbides , 2019, International Journal of Refractory Metals and Hard Materials.

[6]  Zhang Kai,et al.  Microstructure evolution of WC grains in WC–Co–Ni–Al alloys: Effect of binder phase composition , 2017 .

[7]  Weibin Zhang,et al.  A new type of WC–Co–Ni–Al cemented carbide: Grain size and morphology of γ′-strengthened composite binder phase , 2017 .

[8]  Y. Kong,et al.  Microstructure and composition of the grain/binder interface in WC–Ni3Al composites , 2014 .

[9]  G. Wen,et al.  CSUTDCC1—A thermodynamic database for multicomponent cemented carbides , 2014 .

[10]  P. Withers,et al.  On the three-dimensional structure of WC grains in cemented carbides , 2013 .

[11]  Tao Xu,et al.  WC–Ni3Al–B composites prepared through Ni+Al elemental powder route , 2012 .

[12]  V. Zavodinsky Ab intio study of inhibitors influence on growth of WC crystallites in WC/Co hard alloys , 2012 .

[13]  L. Shaw,et al.  Growth mechanisms of WC in WC5.75 wt% Co , 2011 .

[14]  A. Borgenstam,et al.  Abnormal grain growth in cemented carbides — Experiments and simulations , 2011 .

[15]  R. Ramprasad,et al.  The equilibrium morphology of WC particles – A combined ab initio and experimental study , 2011 .

[16]  S. Lay,et al.  Evolution of the WC grain shape in WC–Co alloys during sintering: Cumulated effect of the Cr addition and of the C content , 2009 .

[17]  Dong-Yeol Yang,et al.  Suppression of abnormal grain growth in WC–Co via pre-sintering treatment , 2009 .

[18]  Randall M. German,et al.  Review: liquid phase sintering , 2009 .

[19]  Mei-Jia Yang,et al.  WC–TiC–Ni cemented carbide with enhanced properties , 2008 .

[20]  K. Ishida,et al.  Cobalt-Base High-Temperature Alloys , 2006, Science.

[21]  Suk‐Joong L. Kang,et al.  Growth behavior of rounded (Ti,W)C and faceted WC grains in a Co matrix during liquid phase sintering , 2005 .

[22]  W. Mullins,et al.  Coarsening of Faceted Crystals , 2004 .

[23]  K. Choi,et al.  Effect of VC addition on microstructural evolution of WC–Co alloy: mechanism of grain growth inhibition , 2000 .

[24]  N. Hwang,et al.  Abnormal growth of faceted (WC) grains in a (Co) liquid matrix , 1996 .

[25]  B. Roebuck,et al.  Identification of optimum binder phase compositions for improved WC hard metals , 1988 .

[26]  R. Warren Solid-liquid interfacial energies in binary and pseudo-binary systems , 1980 .