Geological mapping and spectral based classification of basement rocks using remote sensing data analysis: The Korbiai-Gerf nappe complex, South Eastern Desert, Egypt

Abstract The Pan-African Neoproterozoic Korbiai-Gerf nappe complex in the extreme South Eastern Desert of Egypt comprises dismembered ophiolite assemblages tectonically thrusted over pelite-psammopelite, quartzo-feldspathic gneiss and island-arc schistose metavolcanics. The whole sequence is intruded by syn-late to post tectonic mafic and felsic intrusions. The enhanced Landsat-8 band ratio (bands 6/2, 6/7 and 6/5 × 4/5) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Principal Component (PC2, PC6, and PC5) successfully discriminated most of the exposed lithological units and produced a detailed geological map. Granitoids, psammopelite-pelite, gneiss and serpentinite-talc carbonate rocks have been discriminated using ASTER kaolinite, clay, sericite-muscovite and calcite-carbonate indices respectively. Three spectral based classification algorithms have been compared using Landsat-8 and the Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) datasets to obtain the best lithological classification for the exposed basement rock units. Results from the present study revealed that, Support Vector Machine (SVM) classifier algorithm provided the best lithological classification accuracy (97.72%) using the combination of 9 ASTER bands and 20 ASTER derivative images. The results of the present study concluded that, the integrated data of ASTER and Landsat-8 enhanced images are effective in the discrimination and classification of the basement rock units exposed at Korbiai-Gerf nappe complex and can be applied in similar areas in the Arabian-Nubian Shield.

[1]  R. Greiling,et al.  Post-collisional shortening in the late Pan-African Hamisana high strain zone, SE Egypt: field and magnetic fabric evidence , 2001 .

[2]  Ashraf Emam,et al.  SWIR ASTER band ratios for lithological mapping and mineral exploration: a case study from El Hudi area, southeastern desert, Egypt , 2011 .

[3]  Shehata Ali,et al.  A fore-arc setting of the Gerf ophiolite, Eastern Desert, Egypt: Evidence from mineral chemistry and geochemistry of ultramafites , 2016 .

[4]  S. Gabr,et al.  Detection of hydrothermal mineralized zones associated with listwaenites in Central Oman using ASTER data , 2013 .

[5]  Timothy M. Kusky,et al.  Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM) , 2006 .

[6]  W. Calvin,et al.  Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images , 2005 .

[7]  Harald van der Werff,et al.  Lithological mapping and fuzzy set theory: Automated extraction of lithological boundary from ASTER imagery by template matching and spatial accuracy assessment , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[8]  R. Greiling,et al.  A structural synthesis of the Proterozoic Arabian-Nubian Shield in Egypt , 1994 .

[9]  S. Arai,et al.  Carbonate-orthopyroxenite lenses from the Neoproterozoic Gerf ophiolite, South Eastern Desert, Egypt: The first record in the Arabian Nubian Shield ophiolites , 2009 .

[10]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[11]  T. Kusky,et al.  ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt , 2007 .

[12]  S. Gabr,et al.  Detecting areas of high-potential gold mineralization using ASTER data , 2010 .

[13]  Fang Qiu,et al.  Spectral analysis of ASTER data covering part of the Neoproterozoic Allaqi-Heiani suture, Southern Egypt , 2006 .

[14]  R. Greiling,et al.  Spectral analyses of basement rocks in El-Sibai-Umm Shaddad area, Central Eastern Desert, Egypt, using ASTER thermal infrared data , 2015, Arabian Journal of Geosciences.

[15]  R. Bhaskaran,et al.  Supervised Classification Performance of Multispectral Images , 2010, ArXiv.

[16]  M. Serra,et al.  Persistent genetic signatures of colonization in Brachionus manjavacas rotifers in the Iberian Peninsula , 2007, Molecular ecology.

[17]  R. Stern ARC Assembly and Continental Collision in the Neoproterozoic East African Orogen: Implications for the Consolidation of Gondwanaland , 1994 .

[18]  Y. Ninomiya,et al.  Corrigendum to “Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data” [Remote Sensing of Environment 99(1–2):127–139 (2005), ASTER special issue] , 2006 .

[19]  A. Kröner,et al.  Dating of late Proterozoic ophiolites in Egypt and the Sudan using the single grain zircon evaporation technique , 1992 .

[20]  Mohamed W. Ali‐Bik,et al.  Late Neoproterozoic metamorphic assemblages along the Pan-African Hamisana Shear Zone, southeastern Egypt: Metamorphism, geochemistry and petrogenesis , 2014 .

[21]  Le Yu,et al.  Towards automatic lithological classification from remote sensing data using support vector machines , 2010, Comput. Geosci..

[22]  A. Crósta,et al.  Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis , 2003 .

[23]  Mohamed F. Sadek,et al.  Geology and spectral characterization of the basement rocks at Gabal Gerf area, southeastern Egypt , 2005, SPIE Remote Sensing.

[24]  Isao Sato,et al.  Processing and interpretation of ASTER TIR data for mapping of rare-metal-enriched albite granitoids in the Central Eastern Desert of Egypt , 2010 .

[25]  Sheng Ding,et al.  Spectral and Wavelet-based Feature Selection with Particle Swarm Optimization for Hyperspectral Classification , 2011, J. Softw..

[26]  J W Schwarz,et al.  Adaptive Threshold for Spectral Matching of Hyperspectral Data , 2001 .

[27]  Mohamed F. Sadek,et al.  Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis , 2015 .

[28]  A. Ghulam,et al.  Lithological mapping in the Central Eastern Desert of Egypt using ASTER data , 2010 .

[29]  K. Jochum,et al.  The Gabal Gerf complex: A precambrian N-MORB ophiolite in the Nubian Shield, NE Africa , 1995 .

[30]  Mazlan Hashim,et al.  Spectral transformation of ASTER data and the discrimination of hydrothermal alteration minerals in a semi-arid region, SE Iran , 2011 .

[31]  T. Dixon,et al.  Late Precambrian evolution of Afro-Arabian crust from ocean arc to craton , 1980 .

[32]  F. Sabins Remote Sensing: Principles and Interpretation , 1987 .

[33]  Xincai Wu,et al.  Alteration Information Extraction by Applying Synthesis Processing Techniques to Landsat ETM+ Data: Case Study of Zhaoyuan Gold Mines, Shandong Province, China , 2007 .

[34]  W. Manton,et al.  Geochronology of the late Precambrian Hamisana shear zone, Red Sea Hills, Sudan and Egypt , 1989, Journal of the Geological Society.

[35]  Y. Ninomiya,et al.  Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data , 2005 .

[36]  Christopher J. C. Burges,et al.  Geometry and invariance in kernel based methods , 1999 .

[37]  Na Li,et al.  Textural and knowledge-based lithological classification of remote sensing data in southwestern Prieska sub-basin, Transvaal Supergroup, South Africa , 2011 .

[38]  T. M. Ramadan,et al.  Mapping of the late Neoproterozoic Basement rocks and detection of the gold-bearing alteration zones at Abu Marawat-Semna area, Eastern Desert, Egypt using remote sensing data , 2015, Arabian Journal of Geosciences.

[39]  T. Dixon,et al.  Late Proterozoic evolution of the northern part of the Hamisana zone, northeast Sudan: constraints on Pan-African accretionary tectonics , 1992, Journal of the Geological Society.

[40]  S. Hassan,et al.  Late Neoproterozoic basement rocks of Kadabora-Suwayqat area, Central Eastern Desert, Egypt: geochemical and remote sensing characterization , 2015, Arabian Journal of Geosciences.