The closure of the generalised eigenspace of a class of infinitesimal generators

In this paper we study the fine geometric structure of a class of strongly continuous semigroups that satisfy the following property: the resolvent of the infinitesimal generator can be represented as the quotient of entire functions of finite exponential type. This class includes the solution map for functional differential equations and certain partial differential equations. In particular, we present necessary and sufficient conditions for one-to-oneness of the solution map and for completeness of the system of generalised eigenfunctions of the generator.