Approximate Confidence Limits for a Parameter Function in Nonlinear Regression

On propose une methode a deux etapes, la premiere utilisant une transformation des parametres simples pour definir de nouveaux parametres, la seconde necessitant l'utilisation d'une region de confiance ellipsoidale pour obtenir un intervalle de confiance

[1]  E. Beale,et al.  Confidence Regions in Non‐Linear Estimation , 1960 .

[2]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[3]  D. A. Sprott Maximum likelihood in small samples: Estimation in the presence of nuisance parameters , 1980 .

[4]  F. J. Richards A Flexible Growth Function for Empirical Use , 1959 .

[5]  James R Murphy,et al.  Nonlinear Regression Modelling , 1985 .

[6]  H. L. Lucas,et al.  DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS , 1959 .

[7]  G. J. S. Ross,et al.  The Efficient Use of Function Minimization in Non‐Linear Maximum‐Likelihood Estimation , 1970 .

[8]  Robert E. Kass,et al.  Canonical Parameterizations and Zero Parameter‐Effects Curvature , 1984 .

[9]  D. G. Watts,et al.  Parameter Transformations for Improved Approximate Confidence Regions in Nonlinear Least Squares , 1981 .

[10]  Murray Aitkin,et al.  Direct Likelihood Inference , 1982 .

[11]  Norman R. Draper,et al.  Applied regression analysis (2. ed.) , 1981, Wiley series in probability and mathematical statistics.

[12]  J. Nelder The Fitting of a Generalization of the Logistic Curve , 1961 .

[13]  D. G. Watts,et al.  Relative Curvature Measures of Nonlinearity , 1980 .

[14]  H. O. Hartley,et al.  Exact confidence regions for the parameters in non-linear regression laws , 1964 .

[15]  Rupert G. Miller Simultaneous Statistical Inference , 1966 .

[16]  P. Hadley,et al.  Biometrical studies of plant growth , 1978 .

[17]  G. P. Clarke,et al.  Moments of the Least Squares Estimators in a Non‐Linear Regression Model , 1980 .