Feasibility study of fatigue damage detection of strands using magnetostrictive guided waves

[1]  E. Villari,et al.  Ueber die Aenderungen des magnetischen Moments, welche der Zug und das Hindurchleiten eines galvanischen Stroms in einem Stabe von Stahl oder Eisen hervorbringen , 1865 .

[2]  J. Kaleta,et al.  APPLICATION OF THE VILLARI EFFECT IN A FATIGUE EXAMINATION OF NICKEL , 1996 .

[3]  M. Tamin,et al.  Methodology for reliability assessment of steel wire ropes under fretting fatigue conditions , 2017 .

[4]  S. Yu. Gurevich THE THEORY OF ELECTROMAGNETIC GENERATION OF ACOUSTIC WAVES IN A FERROMAGNETIC MEDIUM AT A HIGH TEMPERATURE , 1993 .

[5]  T. M. Roberts,et al.  Acoustic emission monitoring of fatigue crack propagation , 2003 .

[6]  Fabrizio Vestroni,et al.  Static and dynamic response of elastic suspended cables with damage , 2007 .

[7]  B. Augustyniak,et al.  Relationship between magnetostriction and the magnetostrictive coupling coefficient for magnetostrictive generation of elastic waves , 2002 .

[8]  Boris A. Zárate,et al.  Prediction of fatigue crack growth in steel bridge components using acoustic emission , 2011 .

[9]  Gerald Pinter,et al.  Infrared thermographic techniques for non-destructive damage characterization of carbon fibre reinforced polymers during tensile fatigue testing , 2006 .

[10]  J. P. Joule Esq.,et al.  XVII. On the effects of magnetism upon the dimensions of iron and steel bars , 1847 .

[11]  H. Kwun,et al.  The magnetostrictive sensor technology for long range guided wave testing and monitoring of structures , 2003 .

[12]  A. Vincent,et al.  Magnetic Barkhausen noise from strain-induced martensite during low cycle fatigue of 304L austenitic stainless steel , 2005 .

[13]  C. S. Cai,et al.  Acoustic emission monitoring of bridges: Review and case studies , 2010 .