Feasibility study of fatigue damage detection of strands using magnetostrictive guided waves
暂无分享,去创建一个
[1] E. Villari,et al. Ueber die Aenderungen des magnetischen Moments, welche der Zug und das Hindurchleiten eines galvanischen Stroms in einem Stabe von Stahl oder Eisen hervorbringen , 1865 .
[2] J. Kaleta,et al. APPLICATION OF THE VILLARI EFFECT IN A FATIGUE EXAMINATION OF NICKEL , 1996 .
[3] M. Tamin,et al. Methodology for reliability assessment of steel wire ropes under fretting fatigue conditions , 2017 .
[4] S. Yu. Gurevich. THE THEORY OF ELECTROMAGNETIC GENERATION OF ACOUSTIC WAVES IN A FERROMAGNETIC MEDIUM AT A HIGH TEMPERATURE , 1993 .
[5] T. M. Roberts,et al. Acoustic emission monitoring of fatigue crack propagation , 2003 .
[6] Fabrizio Vestroni,et al. Static and dynamic response of elastic suspended cables with damage , 2007 .
[7] B. Augustyniak,et al. Relationship between magnetostriction and the magnetostrictive coupling coefficient for magnetostrictive generation of elastic waves , 2002 .
[8] Boris A. Zárate,et al. Prediction of fatigue crack growth in steel bridge components using acoustic emission , 2011 .
[9] Gerald Pinter,et al. Infrared thermographic techniques for non-destructive damage characterization of carbon fibre reinforced polymers during tensile fatigue testing , 2006 .
[10] J. P. Joule Esq.,et al. XVII. On the effects of magnetism upon the dimensions of iron and steel bars , 1847 .
[11] H. Kwun,et al. The magnetostrictive sensor technology for long range guided wave testing and monitoring of structures , 2003 .
[12] A. Vincent,et al. Magnetic Barkhausen noise from strain-induced martensite during low cycle fatigue of 304L austenitic stainless steel , 2005 .
[13] C. S. Cai,et al. Acoustic emission monitoring of bridges: Review and case studies , 2010 .