Optimizing ontology alignments by using NSGA-II

In this paper, we propose a novel approach based on NSGA-II to address the problem of optimizing the aggregation of three different basic similarity measures (syntactic measure, linguistic measure and taxonomy-based measure) and get a single similarity metric. Comparing with conventional genetic algorithm, the proposed method is able to realize three goals simultaneously, i.e., maximizing the alignment recall, the alignment precision and the F-measure and find the optimal solutions which could avoid bias to recall or precision value. Experiment results show that the proposed approach is effective.

[1]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[2]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[3]  Jérôme Euzenat,et al.  A Survey of Schema-Based Matching Approaches , 2005, J. Data Semant..

[4]  Nazean Binti Jomhari,et al.  The International Arab Journal of Information Technology , 2011 .

[5]  Monika Lanzenberger,et al.  align++ - A Heuristic-based Method for Approximating the Mismatch-at-Risk in Schema-based Ontology Alignment , 2010, KEOD.

[6]  Erhard Rahm,et al.  Quickmig: automatic schema matching for data migration projects , 2007, CIKM '07.

[7]  José F. Aldana-Montes,et al.  Evaluation of two heuristic approaches to solve the ontology meta-matching problem , 2009, Knowledge and Information Systems.

[8]  Enrique Alba,et al.  Optimizing Ontology Alignments by Using Genetic Algorithms , 2008, NatuReS.

[9]  José Francisco Aldana Montes,et al.  Evaluation of two heuristic approaches to solve the ontology meta-matching problem , 2010, JISBD.

[10]  M. Tahar Kechadi,et al.  Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications , 2010, Expert Syst. Appl..

[11]  Heiner Stuckenschmidt,et al.  Improving Ontology Matching Using Meta-level Learning , 2009, ESWC.

[12]  Jérôme Euzenat,et al.  Similarity-Based Ontology Alignment in OWL-Lite , 2004, ECAI.

[13]  Erhard Rahm,et al.  Schema and ontology matching with COMA++ , 2005, SIGMOD '05.

[14]  Erhard Rahm,et al.  COMA - A System for Flexible Combination of Schema Matching Approaches , 2002, VLDB.

[15]  Masoud Rahgozar,et al.  An ontology-based semantic extraction approach for B2C ecommerce , 2011, Int. Arab J. Inf. Technol..

[16]  Daniel Rivero Cebrián,et al.  Soft Computing Methods for Practical Environment Solutions: Techniques and Studies , 2010 .

[17]  Adrian Iftene,et al.  Using a genetic algorithm for optimizing the similarity aggregation step in the process of ontology alignment , 2010, 9th RoEduNet IEEE International Conference.

[18]  Avigdor Gal,et al.  A framework for modeling and evaluating automatic semantic reconciliation , 2005, The VLDB Journal.

[19]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[20]  Giovanni Acampora,et al.  A hybrid evolutionary approach for solving the ontology alignment problem , 2012, Int. J. Intell. Syst..

[21]  Yuh-Min Chen,et al.  Concept feature-based ontology construction and maintenance , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[22]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[23]  Steffen Staab,et al.  Measuring Similarity between Ontologies , 2002, EKAW.