Development of Continuous and Discrete Neural Maps

Two qualitatively different kinds of neural map have been described: continuous maps exemplified by the visual retinotopic map, and discrete maps exemplified by the olfactory glomerular map. Here, we review developmental mechanisms of retinotopic and olfactory glomerular mapping and discuss underlying commonalities that have emerged from recent studies. These include the use of molecular gradients, axon-axon interactions, and the interplay between labeling molecules and neuronal activity in establishing these maps. Since visual retinotopic and olfactory glomerular maps represent two ends of a continuum that includes many other types of neural map in between, these emerging general principles may be widely applicable to map formation throughout the nervous system.

[1]  Geoffrey J. Goodhill,et al.  Retinotectal maps: molecules, models and misplaced data , 1999, Trends in Neurosciences.

[2]  L. Luo,et al.  Graded Expression of Semaphorin-1a Cell-Autonomously Directs Dendritic Targeting of Olfactory Projection Neurons , 2007, Cell.

[3]  A. Lane,et al.  Surface densities of ephrin‐B1 determine EphB1‐coupled activation of cell attachment through αvβ3 and α5β1 integrins , 1999 .

[4]  C. Blobel,et al.  Adam Meets Eph: An ADAM Substrate Recognition Module Acts as a Molecular Switch for Ephrin Cleavage In trans , 2005, Cell.

[5]  Z. Peterlin,et al.  A G protein/cAMP signal cascade is required for axonal convergence into olfactory glomeruli , 2007, Proceedings of the National Academy of Sciences.

[6]  C. Schulte,et al.  Semaphorin-1a Controls Receptor Neuron-Specific Axonal Convergence in the Primary Olfactory Center of Drosophila , 2007, Neuron.

[7]  Liqun Luo,et al.  Olfactory receptor neuron axon targeting: intrinsic transcriptional control and hierarchical interactions , 2004, Nature Neuroscience.

[8]  H. Nakamura,et al.  Disturbance of refinement of retinotectal projection in chick embryos by tetrodotoxin and grayanotoxin. , 1990, Brain research. Developmental brain research.

[9]  R. Axel,et al.  A novel multigene family may encode odorant receptors: A molecular basis for odor recognition , 1991, Cell.

[10]  A. West,et al.  Calcium regulation of neuronal gene expression , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Richard Axel,et al.  Axonal Ephrin-As and Odorant Receptors Coordinate Determination of the Olfactory Sensory Map , 2003, Cell.

[12]  Uwe Drescher,et al.  Rostral optic tectum acquires caudal characteristics following ectopic Engrailed expression , 1996, Current Biology.

[13]  R. Sperry Visuomotor coordination in the newt (triturus viridescens) after regeneration of the optic nerve , 1943 .

[14]  S. Zipursky,et al.  Afferent Growth Cone Interactions Control Synaptic Specificity in the Drosophila Visual System , 2000, Neuron.

[15]  J. Schmidt,et al.  Stroboscopic illumination and dark rearing block the sharpening of the regenerated retinotectal map in goldfish , 1985, Neuroscience.

[16]  A. Prochiantz,et al.  Transduction peptides: from technology to physiology , 2004, Nature Cell Biology.

[17]  Hitoshi Sakano,et al.  A Neuronal Identity Code for the Odorant Receptor-Specific and Activity-Dependent Axon Sorting , 2006, Cell.

[18]  John G Flanagan,et al.  Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map , 1995, Cell.

[19]  Alfred Gierer,et al.  Directional cues for growing axons forming the retinotectal projection , 1987 .

[20]  Ariane Ramaekers,et al.  Developmental origin of wiring specificity in the olfactory system of Drosophila , 2004, Development.

[21]  Ian D. Thompson,et al.  Opposing Gradients of Ephrin-As and EphA7 in the Superior Colliculus Are Essential for Topographic Mapping in the Mammalian Visual System , 2005, Neuron.

[22]  Franco Weth,et al.  Modulation of EphA Receptor Function by Coexpressed EphrinA Ligands on Retinal Ganglion Cell Axons , 1999, Neuron.

[23]  A. Wong,et al.  Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly Brain , 2003, Cell.

[24]  J. Schmidt,et al.  Activity sharpens the map during the regeneration of the retinotectal projection in goldfish , 1983, Brain Research.

[25]  P. Levitt,et al.  Dissociation of Corticothalamic and Thalamocortical Axon Targeting by an EphA7-Mediated Mechanism , 2005, Neuron.

[26]  Linda B. Buck,et al.  Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb , 1994, Cell.

[27]  Richard Miles,et al.  cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map , 2007, Nature Neuroscience.

[28]  Kei M. Igarashi,et al.  Maps of odorant molecular features in the Mammalian olfactory bulb. , 2006, Physiological reviews.

[29]  I. Meinertzhagen,et al.  The protocadherin Flamingo is required for axon target selection in the Drosophila visual system , 2003, Nature Neuroscience.

[30]  C. Shatz,et al.  Transient period of correlated bursting activity during development of the mammalian retina , 1993, Neuron.

[31]  H. Matsuoka,et al.  Biphasic Functions of the Kinase-defective Ephb6 Receptor in Cell Adhesion and Migration* , 2005, Journal of Biological Chemistry.

[32]  Paul A Yates,et al.  Topographic Mapping from the Retina to the Midbrain Is Controlled by Relative but Not Absolute Levels of EphA Receptor Signaling , 2000, Cell.

[33]  John G. Flanagan,et al.  Genetic Analysis of Ephrin-A2 and Ephrin-A5 Shows Their Requirement in Multiple Aspects of Retinocollicular Mapping , 2000, Neuron.

[34]  John B. Thomas,et al.  Drosophila Eph receptor guides specific axon branches of mushroom body neurons , 2006, Development.

[35]  John G Flanagan,et al.  Topographically Specific Effects of ELF-1 on Retinal Axon Guidance In Vitro and Retinal Axon Mapping In Vivo , 1996, Cell.

[36]  R. Heintzmann,et al.  Silencing of EphA3 through a cis interaction with ephrinA5 , 2006, Nature Neuroscience.

[37]  C. Holt,et al.  Topographic Mapping in Dorsoventral Axis of the Xenopus Retinotectal System Depends on Signaling through Ephrin-B Ligands , 2002, Neuron.

[38]  B. Shilo,et al.  A Retinal Axon Fascicle Uses Spitz, an EGF Receptor Ligand, to Construct a Synaptic Cartridge in the Brain of Drosophila , 1998, Cell.

[39]  A. Püschel,et al.  Semaphorin 3A Is Required for Guidance of Olfactory Axons in Mice , 2000, The Journal of Neuroscience.

[40]  Galina P Demyanenko,et al.  The L1 Cell Adhesion Molecule Is Essential for Topographic Mapping of Retinal Axons , 2003, The Journal of Neuroscience.

[41]  Richard Axel,et al.  Visualizing an Olfactory Sensory Map , 1996, Cell.

[42]  E. S. Ruthazer,et al.  Control of Axon Branch Dynamics by Correlated Activity in Vivo , 2003, Science.

[43]  T. R. Clandinin,et al.  The mechanisms and molecules that connect photoreceptor axons to their targets in Drosophila. , 2006, Seminars in cell & developmental biology.

[44]  Mu-ming Poo,et al.  cAMP-Dependent Growth Cone Guidance by Netrin-1 , 1997, Neuron.

[45]  Rüdiger Klein,et al.  Eph/ephrin signaling in morphogenesis, neural development and plasticity. , 2004, Current opinion in cell biology.

[46]  L. Luo,et al.  Temporal Target Restriction of Olfactory Receptor Neurons by Semaphorin-1a/PlexinA-Mediated Axon-Axon Interactions , 2007, Neuron.

[47]  J. Frisén,et al.  Regulation of repulsion versus adhesion by different splice forms of an Eph receptor , 2000, Nature.

[48]  W. Shoji,et al.  Semaphorin3D Guides Retinal Axons along the Dorsoventral Axis of the Tectum , 2004, The Journal of Neuroscience.

[49]  N. Becker,et al.  Responses of temporal retinal growth cones to ephrinA5-coated beads. , 2005, Journal of neurobiology.

[50]  Liqun Luo,et al.  Diverse Functions of N-Cadherin in Dendritic and Axonal Terminal Arborization of Olfactory Projection Neurons , 2004, Neuron.

[51]  Liqun Luo,et al.  Target neuron prespecification in the olfactory map of Drosophila , 2001, Nature.

[52]  R. Axel,et al.  Odorant Receptors on Axon Termini in the Brain , 2004, Science.

[53]  E. Pasquale,et al.  Eph receptors in the adult brain , 2004, Current Opinion in Neurobiology.

[54]  D. O'Leary,et al.  Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system. , 1997, Developmental biology.

[55]  L. Luo,et al.  Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation , 2007, Cell.

[56]  S. Kunes,et al.  Hedgehog, Transmitted along Retinal Axons, Triggers Neurogenesis in the Developing Visual Centers of the Drosophila Brain , 1996, Cell.

[57]  J. Cloutier,et al.  Requirement for Slit-1 and Robo-2 in Zonal Segregation of Olfactory Sensory Neuron Axons in the Main Olfactory Bulb , 2007, The Journal of Neuroscience.

[58]  W. Harris,et al.  The effects of eliminating impulse activity on the development of the retinotectal projection in salamanders , 1980, The Journal of comparative neurology.

[59]  E. Pasquale,et al.  Polarized expression of the receptor protein tyrosine kinase Cek5 in the developing avian visual system. , 1995, Developmental biology.

[60]  Paul A Yates,et al.  Bifunctional action of ephrin-B1 as a repellent and attractant to control bidirectional branch extension in dorsal-ventral retinotopic mapping , 2003, Development.

[61]  Tzumin Lee,et al.  Gradients of the Drosophila Chinmo BTB-Zinc Finger Protein Govern Neuronal Temporal Identity , 2006, Cell.

[62]  I. Rodriguez,et al.  Adenylyl cyclase-dependent axonal targeting in the olfactory system , 2007, Development.

[63]  H. Baier,et al.  In Vivo Imaging Reveals Dendritic Targeting of Laminated Afferents by Zebrafish Retinal Ganglion Cells , 2006, Neuron.

[64]  Richard Axel,et al.  Spontaneous Neural Activity Is Required for the Establishment and Maintenance of the Olfactory Sensory Map , 2004, Neuron.

[65]  C. Holt,et al.  The transcription factor Engrailed-2 guides retinal axons , 2005, Nature.

[66]  Developmental neuroscience: Two gradients are better than one , 2006, Nature.

[67]  Gregory S.X.E. Jefferis,et al.  From Lineage to Wiring Specificity POU Domain Transcription Factors Control Precise Connections of Drosophila Olfactory Projection Neurons , 2003, Cell.

[68]  L. Luo,et al.  Representation of the Glomerular Olfactory Map in the Drosophila Brain , 2002, Cell.

[69]  W. Gao,et al.  Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears , 2000, Nature Neuroscience.

[70]  Scott E. Fraser,et al.  Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo , 1995, Nature.

[71]  Pierre Vanderhaeghen,et al.  Mapping Labels in the Human Developing Visual System and the Evolution of Binocular Vision , 2005, The Journal of Neuroscience.

[72]  T. Okafuji,et al.  EphA receptor tyrosine kinases interact with co-expressed ephrin-A ligands in cis , 2004, Neuroscience Research.

[73]  Hitoshi Sakano,et al.  Odorant Receptor–Derived cAMP Signals Direct Axonal Targeting , 2006, Science.

[74]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[75]  P. Mombaerts,et al.  A Contextual Model for Axonal Sorting into Glomeruli in the Mouse Olfactory System , 2004, Cell.

[76]  J. Bolz,et al.  Multiple Effects of Ephrin-A5 on Cortical Neurons Are Mediated by Src Family Kinases , 2007, The Journal of Neuroscience.

[77]  A. Chess,et al.  Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe , 2000, Nature Neuroscience.

[78]  D. O'Leary,et al.  EphB Forward Signaling Controls Directional Branch Extension and Arborization Required for Dorsal-Ventral Retinotopic Mapping , 2002, Neuron.

[79]  John G Flanagan,et al.  Retinal Axon Response to Ephrin-As Shows a Graded, Concentration-Dependent Transition from Growth Promotion to Inhibition , 2004, Neuron.

[80]  David A Feldheim,et al.  Ephrin-As and Patterned Retinal Activity Act Together in the Development of Topographic Maps in the Primary Visual System , 2006, The Journal of Neuroscience.

[81]  J. Flanagan,et al.  Dscam2 mediates axonal tiling in the Drosophila visual system , 2007, Nature.

[82]  Jürgen Löschinger,et al.  In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases , 1995, Cell.

[83]  M. Dennis,et al.  Developmental neurobiology , 1971, Neurology.

[84]  Herwig Baier,et al.  Regulation of axon growth in vivo by activity-based competition , 2005, Nature.

[85]  Silvia Arber,et al.  Target-Induced Transcriptional Control of Dendritic Patterning and Connectivity in Motor Neurons by the ETS Gene Pea3 , 2006, Cell.

[86]  Ivan Rodriguez,et al.  Axon Guidance of Mouse Olfactory Sensory Neurons by Odorant Receptors and the β2 Adrenergic Receptor , 2004, Cell.

[87]  Chun-Yuan Ting,et al.  Visual circuit development in Drosophila , 2007, Current Opinion in Neurobiology.

[88]  S. Zipursky,et al.  Afferent Induction of Olfactory Glomeruli Requires N-Cadherin , 2004, Neuron.

[89]  Peter J. Clyne,et al.  Odor Coding in a Model Olfactory Organ: TheDrosophila Maxillary Palp , 1999, The Journal of Neuroscience.

[90]  L. Luo,et al.  Intrinsic Control of Precise Dendritic Targeting by an Ensemble of Transcription Factors , 2007, Current Biology.

[91]  H. Cline,et al.  Topographic maps: Developing roles of synaptic plasticity , 1998, Current Biology.

[92]  E. S. Ruthazer,et al.  Insights into activity-dependent map formation from the retinotectal system: a middle-of-the-brain perspective. , 2004, Journal of neurobiology.

[93]  S. Zipursky,et al.  Making Connections in the Fly Visual System , 2002, Neuron.

[94]  S. Firestein,et al.  Absence of Adenylyl Cyclase 3 Perturbs Peripheral Olfactory Projections in Mice , 2007, The Journal of Neuroscience.

[95]  A. Lane,et al.  Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through alphavbeta3 and alpha5beta1 integrins. , 1999, The EMBO journal.

[96]  John G Flanagan,et al.  Neural map specification by gradients , 2006, Current Opinion in Neurobiology.

[97]  M. Zimmer,et al.  EphB–ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion , 2003, Nature Cell Biology.

[98]  Richard Axel,et al.  Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium , 1993, Cell.

[99]  Barry J. Dickson,et al.  Molecular, Anatomical, and Functional Organization of the Drosophila Olfactory System , 2005, Current Biology.

[100]  R. Axel,et al.  Odorant Receptors Govern the Formation of a Precise Topographic Map , 1998, Cell.

[101]  D. Baylor,et al.  Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. , 1991, Science.

[102]  R. Sperry CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[103]  H Breer,et al.  Local Permutations in the Glomerular Array of the Mouse Olfactory Bulb , 2000, The Journal of Neuroscience.

[104]  D. O'Leary,et al.  Molecular gradients and development of retinotopic maps. , 2005, Annual review of neuroscience.

[105]  Hitoshi Sakano,et al.  Continuous and Overlapping Expression Domains of Odorant Receptor Genes in the Olfactory Epithelium Determine the Dorsal/Ventral Positioning of Glomeruli in the Olfactory Bulb , 2005, The Journal of Neuroscience.

[106]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[107]  Paul A Yates,et al.  Molecular Development of Sensory Maps Representing Sights and Smells in the Brain , 1999, Cell.

[108]  M. Law,et al.  Eye-specific termination bands in tecta of three-eyed frogs. , 1978, Science.

[109]  Michael C. Crair,et al.  Developmental Homeostasis of Mouse Retinocollicular Synapses , 2007, The Journal of Neuroscience.

[110]  Keita Endo,et al.  Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages , 2007, Nature Neuroscience.

[111]  Leslie B. Vosshall,et al.  Genetic and Functional Subdivision of the Drosophila Antennal Lobe , 2005, Current Biology.

[112]  B. Dickson,et al.  Flamingo Regulates R8 Axon-Axon and Axon-Target Interactions in the Drosophila Visual System , 2003, Current Biology.

[113]  Li I. Zhang,et al.  Electrical activity and development of neural circuits , 2001, Nature Neuroscience.

[114]  Leslie B. Vosshall,et al.  Axonal Targeting of Olfactory Receptor Neurons in Drosophila Is Controlled by Dscam , 2003, Neuron.

[115]  Richard Axel,et al.  Topographic organization of sensory projections to the olfactory bulb , 1994, Cell.

[116]  W. Harris,et al.  Engrailed and retinotectal topography , 1996, Trends in Neurosciences.

[117]  T. Hunter,et al.  Coexpressed EphA Receptors and Ephrin-A Ligands Mediate Opposing Actions on Growth Cone Navigation from Distinct Membrane Domains , 2005, Cell.

[118]  M. Wolman,et al.  Repulsion or adhesion: receptors make the call. , 2006, Current opinion in cell biology.

[119]  D. O'Leary,et al.  Retinotopic Map Refinement Requires Spontaneous Retinal Waves during a Brief Critical Period of Development , 2003, Neuron.

[120]  John R. Carlson,et al.  Integrating the Molecular and Cellular Basis of Odor Coding in the Drosophila Antenna , 2003, Neuron.

[121]  R. Hunt,et al.  Retinotectal specificity: models and experiments in search of a mapping function. , 1980, Annual review of neuroscience.

[122]  R. Reed,et al.  X Inactivation of the OCNC1 Channel Gene Reveals a Role for Activity-Dependent Competition in the Olfactory System , 2001, Cell.

[123]  J G Flanagan,et al.  The ephrins and Eph receptors in neural development. , 1998, Annual review of neuroscience.

[124]  John G Flanagan,et al.  Topographic Guidance Labels in a Sensory Projection to the Forebrain , 1998, Neuron.

[125]  F. Bonhoeffer,et al.  On the turning of Xenopus retinal axons induced by ephrin-A5 , 2003, Development.

[126]  S. Arber,et al.  Repulsive Guidance Molecule (RGM) Gene Function Is Required for Neural Tube Closure But Not Retinal Topography in the Mouse Visual System , 2004, The Journal of Neuroscience.

[127]  D. O'Leary,et al.  Retroviral Misexpression of engrailed Genes in the Chick Optic Tectum Perturbs the Topographic Targeting of Retinal Axons , 1996, The Journal of Neuroscience.

[128]  G. Shepherd,et al.  Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. , 1997, Annual review of neuroscience.

[129]  A. Schmitt,et al.  Wnt–Ryk signalling mediates medial–lateral retinotectal topographic mapping , 2006, Nature.

[130]  Yu Cao,et al.  Activity-Independent Prespecification of Synaptic Partners in the Visual Map of Drosophila , 2006, Current Biology.

[131]  Matthias Mann,et al.  RGM is a repulsive guidance molecule for retinal axons , 2002, Nature.

[132]  J. C. Clemens,et al.  Dendritic patterning by Dscam and synaptic partner matching in the Drosophila antennal lobe , 2006, Nature Neuroscience.

[133]  Peter Mombaerts,et al.  Postnatal Refinement of Peripheral Olfactory Projections , 2004, Science.

[134]  M. Kirschner,et al.  Graded Positional Information Interpretation for Both Fate and Guidance , 2003, Cell.

[135]  John R. Carlson,et al.  Odor Coding in the Drosophila Antenna , 2001, Neuron.

[136]  M. Stryker,et al.  Ephrin-As Guide the Formation of Functional Maps in the Visual Cortex , 2005, Neuron.

[137]  Marla B. Feller,et al.  Spontaneous patterned retinal activity and the refinement of retinal projections , 2005, Progress in Neurobiology.

[138]  M. Alenius,et al.  Evidence for Gradients of Gene Expression Correlating with Zonal Topography of the Olfactory Sensory Map , 2001, Molecular and Cellular Neuroscience.

[139]  Jonas Frisén,et al.  Ephrin-A5 (AL-1/RAGS) Is Essential for Proper Retinal Axon Guidance and Topographic Mapping in the Mammalian Visual System , 1998, Neuron.

[140]  Linda B. Buck,et al.  A zonal organization of odorant receptor gene expression in the olfactory epithelium , 1993, Cell.

[141]  J G Flanagan,et al.  Regulated cleavage of a contact-mediated axon repellent. , 2000, Science.

[142]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.

[143]  T Pawson,et al.  Unified Nomenclature for Eph Family Receptors and Their Ligands, the Ephrins , 1997, Cell.

[144]  H. Breer,et al.  Olfactory Receptor Proteins in Axonal Processes of Chemosensory Neurons , 2004, The Journal of Neuroscience.

[145]  Richard Axel,et al.  An Olfactory Sensory Map in the Fly Brain , 2000, Cell.